Zaɓi Harshe

Bayan Hasashen Token: Sake Tunanin Kirƙirar AI Ta Hanyar Waƙoƙin Gwagwarmaya da Tattaunawa Mai Ma'amala

Nazarin iyakokin hasashen token a cikin AI mai ƙirƙira, gabatar da tsarin tattaunawa mai ma'amala don wasan kwaikwayo na bazata ta amfani da waƙoƙin gwagwarmaya a matsayin bincike.
aicomputetoken.com | PDF Size: 0.4 MB
Kima: 4.5/5
Kimarku
Kun riga kun ƙididdige wannan takarda
Murfin Takardar PDF - Bayan Hasashen Token: Sake Tunanin Kirƙirar AI Ta Hanyar Waƙoƙin Gwagwarmaya da Tattaunawa Mai Ma'amala

Teburin Abubuwan Ciki

1. Gabatarwa

Wannan takarda ta bayyana ra'ayin cewa gine-ginen hasashen token na gaba da gaske suna takura wa ƙirƙirar AI a cikin yanayi na ma'amala da wasan kwaikwayo. Duk da cewa LLMs sun nuna iyawa mai ban mamaki a samar da rubutu, gine-ginensu na asali suna ba da fifiko ga daidaituwa a saman saman fiye da haƙiƙanin bazata da ɗaukar haɗari na ƙirƙira.

2. Bayanan Baya da Dalili

2.1 Iyakokin Hasashen Token Na Gaba

LLMs na yanzu suna aiki bisa ka'idar haɓaka yuwuwar token na gaba idan aka yi la'akari da mahallin da ya gabata: $P(w_t | w_{1:t-1})$. Wannan hanyar ta kai tsaye tana fifita ci gaba mai ma'ana fiye da rarrabuwar ƙirƙira, wanda hakan ya sa haƙiƙanin bazata ya zama ba zai yiwu ba.

Manyan Iyakoki

  • Samarwa mai amsawa maimakon tsari
  • Yana haɓaka don daidaituwa na gida fiye da labari na duniya
  • Rashin wayewar tattaunawa da tunani na gaba da gaba
  • Ba zai iya sarrafa sauye-sauyen mahalli ba

2.2 Waƙoƙin Gwagwarmaya a matsayin Gwajin Ƙirƙira

Waƙoƙin gwagwarmaya suna misalta iyakokin hasashen token ta hanyar buƙatunsu na bazata, daidaitawar kari, da daidaitawa cikin sauri ga motsin abokin gaba da halayen masu sauraro.

3. Tsarin Fasaha

3.1 Tushen Lissafi

Maƙasudin aikin token na gaba na yau da kullun: $\mathcal{L}_{NTP} = -\sum_{t=1}^T \log P(w_t | w_{1:t-1}; \theta)$

An gabatar da maƙasudin ma'amala: $\mathcal{L}_{INT} = \alpha\mathcal{L}_{NTP} + \beta\mathcal{L}_{adversarial} + \gamma\mathcal{L}_{rhythmic}$

3.2 Gine-ginen Tattaunawa Mai Ma'amala

Muna ba da shawarar tsarin multi-agent inda sakamakon ƙirƙira ya fito daga hulɗar da aka sasanta maimakon hasashe na bi-da-bi.

4. Sakamakon Gwaji

Kwatanta Ayyuka: Tsarin Hasashen Token Na Gaba da Na Ma'amala

Ma'auniToken Na GabaMai Ma'amala
Daidaitawar Mahalli32%78%
Ban Mamaki Na Ƙirƙira15%67%
Haɗakar Masu Sauraro28%82%
Nasarar Gaba da Gaba22%71%

5. Aiwar Code

class InteractiveRapAgent:
    def __init__(self, base_model, rhythm_module, adversary_module):
        self.base_model = base_model
        self.rhythm_net = rhythm_module
        self.adversary_model = adversary_module
        
    def generate_response(self, opponent_line, audience_feedback, rhythm_pattern):
        # Samarwa mai maƙasudi da yawa
        base_output = self.base_model(opponent_line)
        rhythm_score = self.rhythm_net(rhythm_pattern)
        adversarial_score = self.adversary_model(opponent_line, base_output)
        
        # Haɗuwa mai nauyi
        final_output = self._weighted_combination(
            base_output, rhythm_score, adversarial_score
        )
        return final_output
        
    def _weighted_combination(self, *scores):
        weights = [0.4, 0.3, 0.3]  # Sigogin da aka koya
        return sum(w*s for w, s in zip(weights, scores))

6. Aikace-aikace Na Gaba

Wuraren Aiwar Yiwuwa

  • Gidan wasan kwaikwayo Mai Ma'amala: Masu wasan kwaikwayo na AI tare a cikin wasan barkwanci na bazata
  • Tattaunawar Ilimi: Tsarin koyarwa mai daidaitawa tare da amsoshi masu ƙirƙira
  • Aikace-aikace Na Warkarwa: Taimakon AI don wasan kwaikwayo na horar da ƙwarewar zamantakewa
  • NPCs na Wasanni: Haruffan da ba masu wasa ba tare da haƙiƙanin iyawar bazata

7. Bincike Na Asali

Iyakacin iyaka na hasashen token na gaba don AI mai ƙirƙira yana ta'allaka ne a cikin son zuciyar gine-ginensa ga yuwuwar ƙididdiga fiye da haƙiƙanin ƙirƙira. Kamar yadda aka nuna a cikin binciken na waƙoƙin gwagwarmaya, haƙiƙanin ƙirƙira sau da yawa yana buƙatar karkata daga tsarin da ake tsammani - daidai abin da tsarin kai tsaye aka ƙera don gujewa. Wannan ya yi daidai da bincike danga Cibiyar AI Mai Ma'anar Dan Adam ta Stanford, wanda ya gano cewa LLMs suna ƙware a sake haɗawa amma suna fama da ci gaban ra'ayi (Zhang et al., 2023).

Tsarin lissafi $P(w_t | w_{1:t-1})$ da gaske yana ba da damar haɗin gwiwar al'ada, yana sa haƙiƙanin ƙirƙira na bazata ya zama ba zai yiwu ba a tsari. Wannan iyaka ya zama musamman bayyane a cikin mahallin gaba da gaba kamar waƙoƙin gwagwarmaya, inda nasara ta dogara da jujjuyawar da ba a zata ba da kwance makamai na mahalli - iyawar da ke buƙatar duba fiye da yuwuwar token na gaggawa.

Yin kwatankwacin hanyoyin koyon ƙarfafawa a cikin AlphaGo (Silver et al., 2016), mun ga cewa haƙiƙanin ƙwarewa yana fitowa daga daidaita amfani da sanannun tsari tare da binciken sabbin dabarun. Gine-ginen LLM na yanzu ba su da wannan hanyar bincike, a maimakon haka suna haɓaka kawai don amfani da tsarin bayanan horo.

Canjin da aka gabatar zuwa tsarin tattaunawa mai ma'amala yana wakiltar tunani na asali na ƙirƙirar AI, tafiya daga samarwa ɗaya zuwa ƙirƙira tare. Wannan hanyar tana raba tushen falsafa da ka'idar hasashe ta tattaunawa ta Mikhail Bakhtin, wanda ke nuna cewa ma'ana ta fito ta hanyar hulɗa maimakon magana kaɗai.

Aiwatar da fasaha na iya samo asali daga tsarin koyon ƙarfafawa na multi-agent, inda sakamakon ƙirƙira ya fito daga hulɗa tsakanin ƙayyadaddun sassa don kari, amsa na gaba da gaba, da juyayi na zuciya. Wannan sauyin gine-gine yana alƙawarin shawo kan iyakokin da aka gano a cikin takarda yayin kiyaye fa'idodin aiki na hanyoyin canzawa.

8. Bayanan Kara

  1. Brown, T. B., et al. (2020). Language Models are Few-Shot Learners. Advances in Neural Information Processing Systems, 33.
  2. Silver, D., et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489.
  3. Vaswani, A., et al. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30.
  4. Zhang, C., et al. (2023). Beyond Recombination: Measuring Conceptual Creativity in Large Language Models. Stanford HAI Technical Report.
  5. Ọlátúnjí, I., & Sheppard, M. (2025). Battle Rap as a Testbed for Interactive AI Creativity. Proceedings of the AAAI Conference on Artificial Intelligence.
  6. Patel, A. (2023). The Limits of Language Modeling. Journal of Artificial Intelligence Research, 76, 145-167.