2404.16333v2 [cs.SE] 14 Aug 2024

arxXiv

Al Coders Are Among Us: Rethinking Programming Language
Grammar Towards Efficient Code Generation

Zhensu Sun
Singapore Management University
Singapore
zssun@smu.edu.sg

Li Li
Beihang University
China
lilicoding@ieee.org

ABSTRACT

Artificial Intelligence (AI) models have emerged as another impor-
tant audience for programming languages alongside humans and
machines, as we enter the era of large language models (LLMs).
LLMs can now perform well in coding competitions and even write
programs like developers to solve various tasks, including math-
ematical problems. However, the grammar and layout of current
programs are designed to cater the needs of human developers -
with many grammar tokens and formatting tokens being used to
make the code easier for humans to read. While this is helpful,
such a design adds unnecessary computational work for LLMs, as
each token they either use or produce consumes computational
resources.

To improve inference efficiency and reduce computational costs,
we propose the concept of Al-oriented grammar. This aims to repre-
sent code in a way that better suits the working mechanism of Al
models. Code written with Al-oriented grammar discards formats
and uses a minimum number of tokens to convey code semantics
effectively. To demonstrate the feasibility of this concept, we ex-
plore and implement the first Al-oriented grammar for Python,
named Simple Python (S1MPY). SIMPY is crafted by revising the orig-
inal Python grammar through a series of heuristic rules. Programs
written in SIMPY maintain identical Abstract Syntax Tree (AST)
structures to those in standard Python. This allows for not only exe-
cution via a modified AST parser, but also seamless transformation
between programs written in Python and SimPy, enabling human
developers and LLMs to use Python and S1mPy, respectively, when
they need to collaborate. We also look into methods to help existing
LLMs understand and use SIMPy effectively. In the experiments,
compared with Python, SIMPY enables a reduction in token usage
by 13.5% and 10.4% for CodeLlama and GPT-4, respectively, when
completing the same set of code-related tasks. Additionally, these

*Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISSTA °24, September 16-20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0612-7/24/09.

https://doi.org/10.1145/3650212.3680347

Xiaoning Du”
Monash University
Australia
xiaoning.du@monash.edu

Zhou Yang
Singapore Management University
Singapore
zyang@smu.edu.sg

David Lo
Singapore Management University
Singapore

davidlo@smu.edu.sg

models can maintain or even improve their performance when us-
ing SIMPY instead of Python for these tasks. With these promising
results, we call for further contributions to the development of
Al-oriented program grammar within our community.

CCS CONCEPTS

« Computing methodologies — Artificial intelligence; Philo-
sophical/theoretical foundations of artificial intelligence; «
Theory of computation — Grammars and context-free lan-
guages.

KEYWORDS
Code Generation, Programming Language, Large Language Model

ACM Reference Format:

Zhensu Sun, Xiaoning Du, Zhou Yang, Li Li, and David Lo. 2024. AI Coders
Are Among Us: Rethinking Programming Language Grammar Towards
Efficient Code Generation. In Proceedings of the 33rd ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (ISSTA °24), Sep-
tember 16—20, 2024, Vienna, Austria. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3650212.3680347

1 INTRODUCTION

High-level programming languages like Python, Java, and C++ are
designed with two types of audiences in mind [6]: machines that
compile and execute programs and humans who write, read, and
comprehend programs. Machines focus on the operational seman-
tics of programs, while humans additionally emphasize programs’
readability, which is crucial for understanding source code. For
example, one of the code design principles for Python [31] is that
“readability counts” As a result, these languages incorporate many
human-centric design elements within their grammar. For instance,
programming languages utilize explicit delimiters to separate code
structures, which enhances human readability but may not be es-
sential to convey the program’s operational semantics.

Recently, the audiences of programming languages have ex-
panded to include Al models, particularly Large Language Models
(LLMs), which can analyze, generate, and execute code. This is evi-
dent form the impressive performance that LLMs achieved in code
generation [16]. For example, AlphaCode2 [3], a recently released
LLM, reportedly outperforms 85% of human participants in a pro-
gramming competition. Moreover, many LLM-powered assistants,
such as ChatGPT [28] and Bard [14], are now equipped with code

https://doi.org/10.1145/3650212.3680347
https://doi.org/10.1145/3650212.3680347

ISSTA °24, September 16-20, 2024, Vienna, Austria

def sum()3 def sum) (O Coums) Q)G JGAC

if len() == 0: 1en) (O (ams)) @@ @G
raise raise) ()|

num = o For num in
nums sum m

num return sum num
return

(Qj Good smell &
()

def sum) () Crums) (3 if Ten) (Q) Cnums)

=R raise Value) (Error sum) () Coum

=0 " = B = - L
=)@ nu in nums] () ((su _J(nu

for in 8 += - A

AR +) (=) Caum eturs sun num

Bacl smell 2
) h-

Figure 1: An illustration of how LLMs and human programmers
perceive the source code.

execution environments, which enable them to execute generated
code and provide responses based on the results. Thus, the role of
LLMs has evolved from simply being code generators to actively
functioning as “developers” that use programming to complete a
wide range of tasks, such as mathematical computations and file
processing. This shift in paradigm signifies a new era in which Al
models emerge as an important group of programming language
users.

While Al models have taken on their new role, the design of code
grammar is yet to evolve to accommodate their unique needs. Ele-
ments used to improve the readability of source code could impose
an additional computational burden on LLMs when they read and
generate programs. However, the extra readability-enhancing to-
kens may not be essential for LLMs to perform coding tasks. Studies
have revealed that code models do not capture much information
relevant to readability [43], and readability-enhancing symbols like
“:” received significantly lower attention compared to other ele-
ments such as variable names [50]. We illustrate how humans and
Al models perceive a program in Figure 1. When certain elements
that improve readability are removed from the code, the program
retains its core meaning, but it becomes difficult for humans to
understand. However, AI models can process the code more ef-
ficiently when they are adapted to this new code representation.
This observation leads us to ask: What is a suitable grammar for AI
models? Exploring this question is vital for optimizing the efficiency
of LLMs and reducing energy waste in dealing with unnecessary
tokens, especially given that the high operational cost of LLMs sets
a big challenge for providers to generate profit [17] from them. As
Al'models consume and generate source code token-by-token, with
one feed-forward process for each token, reducing the tokens in
code representation has the potential to reduce the time and energy
cost proportionally.

This motivates us to propose the concept of AI-Oriented Gram-
mar, a grammar specifically designed for AI models instead of
humans. The core idea is to derive grammar rules that keep the
code representations concise (with a minimal/reduced number of
tokens to Al models). Notably, the code crafted in this grammar
can be parsed with its adapted parser and then executed to obtain
the same result as the original grammar. A few challenges are in
the way of designing such a new grammar and melting it into Al
models. The Al models are expected to comprehend code written in
this grammar and generate code following its rules to better serve

Zhensu Sun, Xiaoning Du, Zhou Yang, Li Li, and David Lo

the goal of efficiency. At the same time, human developers, who
direct the development, expect to work with grammar that they
find friendly and familiar with.

Given these challenges, the realization of this concept remains
uncertain. To assess the feasibility of Al-oriented grammar, we
embarked on an exploratory study. The study aims to reveal the im-
plications and limitations of integrating Al-oriented grammar into
the existing code generation workflow. Three research questions
guide it, each addressing a key challenge.

RQ1. What is the token reduction capacity of Al-oriented grammar
in source code?

Whether and to what extent an Al-oriented grammar can reduce
the tokens remains an open question. We fill this gap by imple-
menting a proof-of-concept Al-oriented grammar and assessing its
performance. Specifically, we explore a new grammar for Python,
named SimMPy, by heuristically modifying the Python grammar.
Compared to the standard Python grammar, we prohibit using to-
kens popularly hired to style the code appearance, e.g., whitespace
and newline, and simplify keywords, operators, and delimiters to a
more compact form. The modifications are designed to be simple,
as this is the first attempt to explore such Al-oriented grammar.
We also developed an AST parser for StMPY that can parse its code
into the same AST as standard Python code, as well as a converter
for seamless code transitions between SiMPy and Python code. A
comparative analysis between the SiMPy and Python grammars
was conducted using tens of tokenizers employed by existing LLMs.
The findings indicate a notable reduction in token usage when
employing SIMPY, with decreases ranging between 8.6% and 34.7%,
thus reducing the time and computational cost during inference by
a similar level [19]. For example, the tokenizer of GPT-4 demon-
strates a significantly enhanced efficiency with StmPy, achieving a
10.4% reduction in token size.

RQ2. How can AI models understand Al-oriented grammar?

Prior research demonstrates that Al models can comprehend
human-centric grammars of existing programming languages [16].
However, how these models can learn Al-oriented grammar re-
mains unexplored. We thus further experiment with SIMPY to find
an effective way. We explored two different training strategies: di-
rectly training a model on a SIMPy-based code dataset (converted
seamlessly from a Python dataset) and fine-tuning a model, origi-
nally trained with a Python dataset, on the StmPy dataset. A control
group, where a model is directly trained on the Python code dataset,
is also included for comparison. The models trained with either
strategy should achieve at least equivalent accuracy compared with
the control group. Otherwise, it would be impractical to adopt Al-
oriented grammar. For each training strategy, we experiment with
three models: CodeGen-NL, TinyLlama, and Pythia. The results
reveal that models initially trained with Python can adapt effec-
tively to SIMPy. For instance, a CodeGen model, initially trained on
Python, attains a 7.32% Pass@10 on HumanEval; further fine-tuning
it on SIMPY witnesses an increase of Pass@10 to 9.15%.

RQ3. How can Al-oriented grammar support real-world scenarios?

Given that Al-oriented grammar may compromise human read-
ability, its application is somewhat restricted. Thus, a remaining

Al Coders Are Among Us: Rethinking Programming Language Grammar Towards Efficient Code Generation

=) D) DO
0000M0ED)0EH000000
00000000)G
0000cE0ED00000 — dmiters
0000 m) ()@) (mems) DO
00000000ENDEOHH0ED D
0Q00 o) () () (]

— Visual Coding Style

Figure 2: Illustrations of human-centric design elements in Python.

challenge for Al-oriented grammar is how it could be used in real-
world scenarios, particularly when human-readable source code is
necessary. We first discuss the basic usage scenario of Al-oriented
grammar, i.e., scenarios in which the code generated by the Al mod-
els is not intended to be displayed to human users. Al agents [40]
fall into this category, where the agents solve user-defined prob-
lems by generating and executing code in Al-oriented grammar.
The code generated in the process is of little interest to the users.
However, there are still many scenarios in which human developers
need to review the code such as collaborative programming with
coding assistants. We thus propose an inference framework for
code generation named DualCode. DualCode utilizes a rule-based
converter to convert code between these grammars, ensuring that
users interact with human-readable code as usual. At the same time,
the model benefits from the efficiency of Al-oriented grammar. Our
experiments confirm that DualCode introduces negligible latency,
with the converter of SIMPY processing code under 500 tokens in
less than 1.0 ms.

The source code of the paper is available at https://github.com/
v587su/SimPy. The contributions of this paper are summarized as
follows:

e We propose the concept of Al-oriented grammar and empirically
explore its feasibility and potential, paving the way for future
improvements in programming language design that prioritize
Al efficiency.

o We implement the first Al-oriented grammar for Python, named
SiMPy, which can reduce at least 8.3% tokens in Python source
code.

e We propose a novel code generation framework, DualCode, ex-
panding the applicability of Al-oriented grammar beyond Al-only
scenarios with negligible additional latency.

2 MOTIVATION

In this section, we carefully analyze the human-centered aspects
found in the grammar of current programming languages and sug-
gest the idea of an Al-oriented grammar. , we introduce the dataset
that later will be used in our study when answering the three RQs.

2.1 Human-centric Grammar Design

As discussed in Section 1, modern programming languages are
predominantly designed with human-centric grammar. This design
philosophy originates from the longstanding reality that humans

ISSTA °24, September 16-20, 2024, Vienna, Austria

were the only developers for decades. In the current era of LLMs,
this human-centric design philosophy has not been significantly
challenged. To better ground this idea, we examine the grammar
of widely used programming languages, focusing on lexical and
syntactical elements that enhance human readability. Below, we
summarize the identified patterns and provide examples in Figure 2:

Visual Coding Style The programming language grammar is de-
liberately crafted to accommodate diverse coding styles. Although
not mandatory, styles like those recommended in the Python PEP8
guide [44] rely on grammatical support. For example, the coding
style requires the programs to be written in multiple lines instead of
a single extremely long line, easing human code review on screens.
This necessitates several lexical elements: line breaks to separate
lines, indents to visualize code blocks, and line continuation sym-
bols for splitting long lines. Figure 2 demonstrates these aspects,
with line breaks and indents highlighted in purple. Similarly, the
coding style suggests surrounding each binary operator with a
single white space on either side. Therefore, lexical grammar must
accommodate such stylistic elements, even if they may not con-
tribute to the core semantics in parsing.

Intuitive Notations The human-centric syntax of programming
languages is designed to be intuitively understandable to humans.
Common operators like “+” for addition and “=” for assignment
are chosen for their familiarity, and derivations like the augmented
assignment operator “+=" maintain this intuitive connection. Al-
though potentially more concise symbols could replace these (e.g.,
using a brand-new symbol “$” for “+="), they are still deliberately
designed to maintain human readability. Similarly, for structural
clarity, programming languages often employ explicit delimiters,
such as symbols or keywords, to define code structures despite these
delimiters not being essential for parsing. For instance, Python’s
compound statements, such as the if statement and for statement,
use a colon to demarcate the header from the body. While a parser
might deduce these components from line breaks alone, the colon
acts as a visual aid, as illustrated in Figure 2, where colons are
highlighted in red. This emphasis on intuitive notation and explicit
delimiters, although not essential for parsing, significantly aids
human comprehension.

2.2 AI-Oriented Grammar

Grammar is a rule set that defines how the source code should
describe the programming language’s semantics in aspects of lexis
and syntax, using notations such as symbols and keywords. The
primary function of the notations in the grammar is two-fold: to
define a program’s structure for machine execution and to enhance
visual comprehension for human readability. Given that Al models
do not require assistance in visual comprehension, the focus of
Al-oriented grammar is solely on structural definition. We thus con-
sider a notation unnecessary for Al models if it does not contribute
to accurate parsing by the parser. Al-oriented grammar is designed
with indispensable notations.

In the design process of a programming language, semantics
are defined first, followed by the development of a grammar to
represent them. Therefore, employing Al-oriented grammar does
not alter the fundamental semantics of the programming language.
Technically, a programming language grammar and its Al-oriented

https://github.com/v587su/SimPy
https://github.com/v587su/SimPy

ISSTA °24, September 16-20, 2024, Vienna, Austria

72 tokens

def two_sum(nums:| 1ist[int], target: int) -> list[int]:]

chk_map:[fdict[int, int] = {}\n
for index, val in enumerate(nums):

compl = target - val\n

if compl in chk_map:\n

return [chk_map[compl], index]\i|

chk_map[valf] = index\n

return []

Python

Same AST ﬁ Same Execution

R |
SimPy esults

60 tokens
<def stmt>two_sum nums:list[int] target:int<arrow>1list
[int]<block start>chkimap:dict[int int]={}<for stmt>
index,val enumerate(nums)<block_start>compl=target-val
<if_stmt>compl<in>chk_map<block_ start>Kpetupn[chk_map
[compl] index] =~ = 1 chk_map[val]=index<block end>
<return>[]J<block_end>

Figure 3: A comparison between Python and SIMPY source code,
tokenized by GPT-4’s tokenizer. Continuous characters with the
same background color represent the same token. Notably, there are
no line breaks in the StMPyY example and we add these line breaks in
the figure for our human readers.

design share the AST (abstract syntax tree) definition. Given that an
AST uniquely encodes the semantics of a code, it facilitates an equiv-
alent transformation between implementations of the semantics
with either grammar.

2.3 Python Code Dataset for Our Study

As a newly proposed concept, we are still unclear whether Al-
oriented grammar can be realized and what scenarios it can be
applied to. To address these uncertainties and explore the potential
of Al-oriented grammar, we conduct an empirical study guided by
three critical research questions, respectively introduced in Sec-
tion 3, Section 4, Section 5. Our study is centered around Python,
the main programming language of the execution environment for
LLMs like GPT-4 and Bard to address programming-required tasks.
We utilize the Python subset of starcoderdata [23], a filtered variant
of The Stack dataset [21], a comprehensive collection of over 20
million code files sourced from open-source GitHub repositories.
We keep the code files from the repositories with over 100 stars, re-
sulting in 623,887 code files. The dataset is partitioned into training
and validation sets in a 95:5 ratio. We do not create a separate test-
ing set, as we plan to evaluate the model’s performance using other
established evaluation datasets. The code snippets in the evaluation
datasets are excluded from the training dataset.

3 TOKEN REDUCTION (RQ1)

In this section, we present an instance of Al-oriented grammar to
answer RQ1: What is the token reduction capacity of Al-oriented
grammar in source code? We propose an Al-oriented grammar for
Python as a proof-of-concept (Section 3.1) and then proceed to
evaluate the extent of token reduction achievable with this grammar
(Section 3.2).

Zhensu Sun, Xiaoning Du, Zhou Yang, Li Li, and David Lo

3.1 An Al-oriented grammar for Python

We introduce how SimPy, a simplified grammar for Python, is de-
signed by applying the philosophy of Al-oriented grammar in Sec-
tion 3.1.1. We discuss how SimPy is validated against ambiguity
in section 3.1.2 and prove the semantic equivalence in section 3.1.3.
Alongside S1MPy, we develop a toolkit including a parser to in-
terpret SIMPY source code into Python’s AST, and a converter for
seamless code translation between SiMPy and Python.

3.1.1 Design. A straightforward method to reduce the number of
tokens in source code is to remove redundant delimiters. For ex-
ample, consecutive newline symbols or whitespace (neither indent
nor dedent) can be reduced to a single instance without affecting
the code’s semantics. These tokens can be optimized in programs
written in any programming language. Inspired by the example in
Introduction, we explore slight modifications to an existing gram-
mar to reduce even more tokens.

As the first attempt at Al-oriented grammar design, we limit the
changes to terminals in grammar; the semantics of production rules
are kept intact. Terminals are notations! that cannot be expanded
by any production rule. Typical terminals include keywords (e.g.,
“true”), symbols (e.g., “>=", “(”, and *)’), literals (e.g., user-defined con-
stants), and identifiers (e.g., variable names). Limiting the changes
to terminals additionally helps maintain semantic equivalence be-
tween Python and StMPY , minimizes potential ambiguity in SiMPy
, and keeps implementation efforts at an acceptable level.

In the following, we use Python 3.12 as the base grammar and
describe the modifications made to obtain SIMPY . SIMPY is not
guaranteed to be optimal in terms of model-processing efficiency
but is sufficient to serve as a proof-of-concept demonstration for
Al-oriented grammar. For a quick comparison, an illustration of
SiMPy and Python code is shown in Figure 3, where both code
snippets share the same AST but the SIMPY representation consists
of fewer tokens (measured by the GPT-4 tokenizer). In Table 1,
we compare the grammar specifications of key productions before
and after these modifications and count the tokens affected in the
modification. Limited by the space, we introduce the two major cat-
egories of modifications here; the complete grammar specification
is available in our artifact.

Replace terminal notations with tokens. This type of modifica-
tion is based on two observations: 1) the whitespace around certain
terminals, such as “true”, is mandatory to ensure recognizability,
and 2) some terminals, like “+=", might be tokenized into multiple
tokens. If we can find a way to eliminate the need of surrounding
whitespace for these terminals and ensure that they are parsed as
a single token, more tokens can be removed when squeezing out
redundant delimiters. Based on whether the terminals are made
of a fixed sequence of characters, they can be divided into two
groups, namely constant terminals and user-defined terminals. The
instances of user-defined terminals are not available to the grammar
definition. Here, we propose to replace the constant terminals by
distinct token placeholders. For example, “true” and “>=" will be
replaced by “<true>” and “<ge>", respectively. In this way, white-
space around these placeholders is no longer needed. During the

!Terminals are tokenized by the compiler lexer. To distinguish the tokenization per-
formed by the lexer and that performed by the tokenizers of LLMs, we use the term
“notation” to refer to the tokens produced by the lexer.

Al Coders Are Among Us: Rethinking Programming Language Grammar Towards Efficient Code Generation

ISSTA °24, September 16-20, 2024, Vienna, Austria

Table 1: Comparison of grammar specifications for Python and S1MPY, using the official Python grammar notation ([32]). Each terminal
notation affected by SIMPY is annotated in blue. The table also includes the count of such terminal notations: “N” represents the number of

lines, “n” signifies the count of repetitive elements, and “?” indicates that the number of terminals is conditional.
Name Grammar Specification #Terminal
block Python | NEWLINE INDENT statements DEDENT 3
oc
SiMPY ‘<block_start>" statements ‘<block_end>’ 2
Python | ‘def’ NAME [type_params] ‘(" [params] ‘)’ [->" expression] " [func_type_comment] block 4+1?
function_def
SiMPy ‘<def_stmt>" NAME [type_params] [params] [‘<arrow>" expression] [func_type_comment] block 1+1?
Python ‘class’ NAME [‘(’ [arguments] ‘)’] *" block 2+27
class_def
SiMPy ‘<class_stmt>" NAME [‘(’ [arguments])’] block 1+2?
Python ‘if” named_expression ‘:’ block elif_stmt 2
if_stmt
SiMPY ‘<if_stmt>" named_expression block elif_stmt 1
. Python ‘for’ star_targets ‘in’ ~ star_expressions " [TYPE_COMMENT] block [else_block] 3
or_stmt
- SimMPy ‘<for_stmt>’ star_targets ~ star_expressions [TYPE_COMMENT] block [else_block] 1
Python ‘with’ ;) .with_item+ " [TYPE_COMMENT] block 2+n
with_stmt
SimMPy ‘<with_stmt>" **.with_item+ [TYPE_COMMENT] block 1
Python ‘try’ * block except_block+ [else_block] [finally_block] 2
try_stmt
V- SiMPy ‘<try_stmt>’ block except_block+ [else_block] [finally_block] 1
Python ‘while’ named_expression “:’ block [else_block] 2
while_stmt
SiMPY ‘<while_stmt>" named_expression block [else_block] 1
Python ‘from’ (7 | *...)* dotted_name ‘import’ import_from_targets 2+n?
import_from
SimMPy ‘<from_import_stmt>" ("’ | *..”)* dotted_name import_from_targets 1+n?
Python ‘;”.simple_stmt+ [;"] NEWLINE n+1+1?
simple_stmts
SiMPy [‘<line_sep>’].simple_stmt+ [‘<line_sep>’] n?+1?

tokenization by LLMs, each placeholder will be mapped directly to
an entry in the vocabulary of the tokenizer, being treated as a single
token. Note that some single-character symbols, like “”, “(", and
“=”, are not replaced in consideration of the common optimization
provided by the popular tokenizers — these symbols are combined
into their next token thus contributing no extra token. For example,
“(nums” in Figure 2 is treated as a single token by GPT-4.
Simplify notations in the grammar context. Some terminal
notations can be further simplified in the context of specific produc-
tion rules. During the design, we review every production rule and
determine if any notations can be removed, merged with or replaced
by others. Here, we mainly focus on delimiter symbols, keywords,
and other terminals produced by the lexer (e.g., “NEWLINE”). De-
limiters separate different program structures, many of which are
used to aid humans in reading. In a given grammar context, some
delimiters can be removed without affecting the parsing. Taking
the “function_def” rule as an example, “(” and “)”, surrounding the
parameters, and “:”, setting aside the function header and body,
are discarded. As a result, four terminals plus one terminal in the
optional structure in the original Python grammar are simplified
into one terminal plus one in the optional structure.

In another example, the “block” statement in Python hires “NEW-
LINE”, “INDENT”, and “DEDENT” to indicate the start and end of a
block. Here, “NEWLINE” and “INDENT” are merged and replaced
by the new token placeholder “<block_start>", while “DEDENT” is
replaced by “<block_end>" according to the previous design rule.
Three affected terminals in Python grammar are reduced into two.
Another design we would like to highlight is that the“NEWLINE”

terminal, indicating the line breaks, are replaced with an new op-
tional token placeholder “<line_sep>” in simple_stmts. It permits
the omission of “<line_sep>" when the subsequent a token implying
the start of a new line, such as “<def_stmt>" (the replacement of
“def”) for function definitions or “<class_stmt>" (the replacement
of “class”) for class definitions.

Finally, we leverage the design of existing tokenizers to replace
some tokens with those that are combined into their following
tokens by the tokenizers. For example, the whitespace character
is combined into its following token by GPT-4, as illustrated by “
two” and “ int” in Figure 2. For some mandatory explicit delimiters,
if they can be replaced by a whitespace, the number of tokens can
also decrease. For instance, we replace “ with a whitespace in
the with_stmt. However, such replacement may cause conflicts, as
whitespace is widely used for separation in for many structures.
One example is the list structure in Python, which uses to sepa-
rate different elements, e.g., “[‘1’, ‘2°’]”. When we replace the * with
a whitespace, the parser generator raises a conflict regarding the
concatenation of strings separated by whitespace, such as “hello’
‘world”. To resolve this conflict, we introduce the string concatena-
tion with a new token placeholder, “<concat>", as a separator for
string concatenation. This approach considers that the list struc-
ture is used more frequently in code. Representing more frequent
components with fewer tokens is a widely used strategy in content
compression. Designing a grammar that considers the frequency of
different terminals, structures, and grammar rules could be a very
interesting direction for future work.

ISSTA °24, September 16-20, 2024, Vienna, Austria

3.1.2 Unambiguity of SiMPy . To determine whether a grammar
has ambiguity is theoretically undecidable [13]. In practice, parser
generator tools are commonly hired to check for ambiguities in
grammar, including those of popular programming languages [15].
A parser generator can find a wide range of ambiguities in the gram-
mar, such as conflicts that arise when the parser has two possible
actions at one step. Practically, this is almost the best way to check
the ambiguity of SiMPy. We have successfully generated parsers
for SIMPY using the GLR (generalized left-to-right rightmost deriva-
tion parser) parsing algorithm [22] from tree-sitter [42], where no
ambiguity is detected.

Next, we provide an analytical discussion about why our trans-
formations are unlikely to introduce ambiguity to the grammar.
First of all, the transformations are only made to terminal notations,
which act as keywords, symbols, or delimiters. Changes made to
keywords and symbols are guaranteed to represent its unique se-
mantics, while changes made to delimiters should not affect the
recognition of the construct, as well as its precedent and subsequent
constructs.

Case I: New notations are added or introduced as replacements.

Importantly, different notations are not replaced with the same
new notations. To this end, the new notations do not interfere with
production rules for which the transformation is not applicable.
Given that they are semantically equivalent notations as the original
one, the parsing of the affected production rules remains the same.
For example, replacing the ‘NEWLINE INDENT’ in the production
rule of block (see Table 1) with ‘<blcok_start>" conveys the same
semantics that a block is about to start.

Case II: Existing notations are removed.

Arbitrary removal of notations may introduce ambiguity to the
grammar. We carefully design a few heuristics when removing
notations so they are unlikely to cause problems.

e Remove notations with redundant semantics as their adja-
cent notations. For example, “’in many statements indicates
the end of the previous construct and the start of a new con-
struct, e.g., in ‘if’ named_expression ‘:’ block elif stmt. However,
the block construct initiates with its starting symbol, making
the construct itself distinguishable from any previous construct.
Hence, removing “’ is safe for this case.

e Remove delimiters used to scope a construct when the
scope of its precedent and subsequent constructs is clear.
For example, the (" and ‘)’ for parameters are actually unneces-
sary in function_def raw:= ‘def’ NAME [type_params] ([params]
)’ [-> expression] % [func_type_comment] block. NAME is an
atomic token, thus will not interfere with the beginning of param-
eters when type_params is absent. type_params are surrounded
by " and ', making their presence not an issue for recognizing
params. Hence, {(” can be safely removed. Now, looking at the
subsequent constructs, [~>" expression], ’, [func_type_comment],
or block possesses a unique indicator of their beginning. Hence,
‘)’ can be safely removed as well. Another example is the ‘import’
keyword in import_from := from’ (V| °..)* dotted_name ‘import’
import_from_targets. Since dotted_name is a must and contains
no white spaces, hence the white space between dotted_name and
import_from_targets can perfectly separate these two constructs.
Removing ‘import’ is also fine.

Zhensu Sun, Xiaoning Du, Zhou Yang, Li Li, and David Lo

3.1.3 Semantic equivalence between SimPy and Python. SIMPY is
designed as a simplified grammar of Python, which means a pro-
gram written in Python can be equivalently and deterministically
transformed to its counterpart in SIMPY , and vice versa. In other
words, Python and SiMPy are semantically equivalent. We prove
this statement in Theorem 1.

Formally, we define a grammar G and a grammar G’. G’ is ob-
tained via a transformation T to the production rules in G. Given a
production rule, T is restricted to adding, replacing, or removing a
terminal notation or a sequence of terminal notations. The trans-
formation between Python and SimPy is an instance complying
with this restriction. For example, T(NEWLINE INDENT statements
DEDENT) = ‘<block_start>"T (statements) ‘<block_end>".

THEOREM 1. Python and SIMPy are semantically equivalent.

Proor. Two programs are semantically equivalent if they share
the same AST. We assume the Python grammar can be transformed
into the SIMPY grammar via T.

We give the proof by structural induction on p.

Base case: p is an atomic program construct. According to the
design of T, for keywords and symbols used in atomic program
construct, a subset of them are transformed to a new token, e.g.,
true is transformed to <true>. Since the mapping is unique and
deterministic, a keyword and its mapped token share identical
semantics and will be abstracted to the same AST node.

Inductive case: This can be proved by analyzing each compound
language construct that is affected by the transformation. Due to the
space limitation, we only show one proof for the if stmt construct.
Assuming p = ‘if’ named_expression ’ block elif stmt, we have p’ =
<if_stmt>" T(named_expression) T(block) T(elif stmt). Both p and
p” will be translated into an AST rooted with a node representing
the if statement, and with three children representing the named
expression, function body, and else statement. By the induction hy-
pothesis, T(named_expression), T(block), andT (elif _stmt) share
the same AST with named_expression, block, and elif_stmt, re-
spectively. Hence, p and p’ share the same AST.

By proving all other constructs, we can prove that for any pro-
gram in Python, its counterpart in SIMPY is semantically equivalent
to it. Similarly, we can prove that for any program in SimMPy , its
counterpart in Python is semantically equivalent to it as well. Thus,
the theorem is proved. O

3.1.4 Implementation. Based on the grammar specifications of
SimPy, we develop a toolkit for it, including an AST parser for
SIMPY code and a converter for seamless translation between SiMPy
and Python source codes. The parser is built upon tree-sitter [42],
a popular parser generator tool. We first describe the grammar
specification of SIMPy in the configuration file of the tree-sitter
and then generate the parser. With the help of the GLR algorithm
from the tree-sitter, we ensure SIMPY resolves all the conflicts and
no ambiguity exists. The generated parser can parse the StMPy
source code into the AST of Python. Based on this parser, we fur-
ther implement a converter, where specific conversion rules are
established for each node of the AST. From a pragmatic point of
view, we test our implemented toolkits by conducting round-trip
transformations, where Python source code is first converted into
S1MPY code and subsequently retranslated back to Python. Our first
tests on the Python dataset revealed that, ignoring all whitespace,

Al Coders Are Among Us: Rethinking Programming Language Grammar Towards Efficient Code Generation

Table 2: Percentage of token reduction achieved with SitMPy. The
“Code” and “Web” in the “Vocab Source” column represent the sources
for constructing the tokenizer’s vocabulary: code repositories and
internet data, respectively.

. Vocab | Vocab Tokens
Tokenizer R
Source | Size | python SmMPy
CodeBert Code 50k 1.33B | 0.87B 34.7%]
GPT2 Web 50k 1.33B 0.87B 34.7%]
CodeLlama Web 32k 0.97B | 0.84B 13.5%]

WizardCoder Web 32k 0.97B | 0.84B 13.5%]
DeepSeek-Coder | Web 32k 0.97B | 0.84B 12.9%]

CodeGen Web 51k 0.93B | 0.82B 12.6%)
CodeT5+ Web 51k 0.93B 0.82B 12.6%]
Codex Web 51k 0.93B 0.82B 12.6%]
CodeT5 Code 32k 0.91B 0.78B 13.8%]
StarCoder Code 49k 0.83B | 0.76B 8.6%]

SantaCoder Code 49k 0.83B | 0.76B 8.8%]
Replit-code Code 33k 0.82B | 0.75B 8.6%]
GPT-3.5 Web 100k 0.71B 0.63B 10.4%]
GPT-4 Web 100k 0.71B 0.63B 10.4%]

the textual content of the code remains unchanged after the trans-
formation. In addition, we assess its soundness through execution
results. We perform the round-trip transformation to the ground-
truth code snippets of HumanEval and run the test cases on both
the transformed and the original code. The execution results of all
the transformed code and the original code are exactly the same,
which also indicates the soundness of our implementation.

3.2 Experiments of RQ1

In this section, we detail the tokenizers employed in our experi-
ments and describe the experimental results.

3.2.1 Tokenizers. Our experiments encompass a broad spectrum of
tokenizers from various LLMs. The main difference between them
is the training corpus, leading to different token vocabularies.
GPT-2 [35], Codex [8], GPT-3.5 [29], GPT-4 [30]: These tokeniz-
ers, released by OpenAl, are trained on a mixed corpus, including
both natural language and programming language, with GPT-4
being the latest version offering state-of-the-art performance in
various language tasks.

CodeLlama [37], WizardCoder [24], DeepSeek-Coder [1]: These
tokenizers are derived from the tokenizer of Llama 2 [41] which is
also trained on the mixed corpus.

SantaCoder [2], StarCoder [23], Replit-code [36]: These tok-
enizers are specialized for code, having been trained exclusively
on programming language datasets, and are thus more adept at
handling source code.

CodeGen [27], CodeT5 [47], CodeT5+ [46]: These tokenizers are
extended based on the vocabulary of GPT2 with additional tokens
representing repeating tokens of tabs and white spaces.

3.2.2 Results. To answer RQ1, we conducted an evaluation involv-
ing the representation of code files from our Python dataset in both

ISSTA °24, September 16-20, 2024, Vienna, Austria

its original grammar and in SIMPY, followed by the tokenization
using the same tokenizer for each representation. We created the
SiMPyY dataset by converting the Python dataset with our converter.
In tokenizing the SIMPY code, we modify the tokenizers to include
tokens of SIMPY in their vocabularies. In total, 14 tokenizers from
popular LLMs are evaluated in our experiments, where each tok-
enizer’s vocabulary source and size are also documented to offer a
comprehensive view of SIMPY’s performance across different mod-
els. By examining the variation in token numbers, we evaluated
S1MPY’s effectiveness in reducing token size, thus showcasing the
potential benefits of Al-oriented syntax.

As revealed in table 2, SIMPY can reduce the number of tokens by
8.6% to 34.7%, depending on the tokenizers. The GPT-4 and GPT-3.5
tokenizers, which are already the most efficient in representing
Python source code, show a further reduction of 10.4% in token
count with S1MPy. For tokenizers trained on code corpora, such as
Replit-code and StarCoder, SIMPY achieved a token reduction rang-
ing from 8.6% to 13.8%. Tokenizers trained on web-based corpora
like CodeGen and CodeT5 also exhibited significant reductions,
between 12.6% and 13.5%. The most pronounced impact of SIMPy
is observed with the least efficient tokenizers, CodeBert and GPT-2,
where a remarkable 34.7% reduction in token count was achieved.
These promising results highlight SIMPY’s potential to reduce token
count for source code representation. As estimated by OpenAlI [19],
the Floating-point operations (FLOPS) required for generating each
token during inference can be regarded as being only relevant to
the model size when the context size is fixed. Therefore, a reduction
in token count can be directly translated to a decrease in FLOPS at
a similar level, resulting in faster inference speeds given the fixed
computing speed of the device.

Answer to RQ1: Al-oriented grammar, exemplified using
S1MPy, effectively reduces the number of tokens required for
source code representation, with models like GPT-4 benefiting
from a 10.4% reduction. Correspondingly, it leads to a speed
up and a computing saving during inference at a similar level.

4 MODEL TRAINING (RQ2)

In this section, we aim to answer RQ2: How can Al models under-
stand Al-oriented grammar? We experimentally investigate whether
Al models can retain their accuracy when trained with Al-oriented
grammar. We describe our training strategies in Section 4.1 and
assess their effectiveness on two language models in Section 4.2.

4.1 Training Strategies

Training Al models with Al-oriented grammar is a pivotal step in
enabling the model to deal effectively with source code in this new
format. Despite the efficiency gains demonstrated by SimMPy, such
training should not compromise the model’s accuracy. To explore
the feasibility of such training, we experiment with two different
strategies. Next, we introduce the strategies in the experiment, from
tokenizer refining to model training.

Tokenizer Refining S1MPy introduces 78 new tokens for the tok-
enizers to recognize. For example, the “def” keyword of the original
Python grammar is replaced by a token “<def_stmt>". Given the ex-
isting association between the pre-trained model and its tokenizer,

ISSTA °24, September 16-20, 2024, Vienna, Austria

completely retraining the tokenizer on SIMPY code to optimize to-
ken distribution is impractical. Instead, we opt for a more feasible
approach: expanding the tokenizer’s vocabulary to include these
new tokens. Correspondingly, this modification requires resizing
the embedding matrix ([vocab size * embedding size]) and the out-
put layer ([hidden state size * vocab size]) to fit the expended vocab
size. This expansion introduces a few new parameters, mainly in
the output layer, around 78 * hidden_size parameters. For instance,
modifying a CodeGen [27] model with a hidden state size of 2048
introduces around 160 thousand new parameters, a negligible in-
crease (less than 0.01%) in the total parameter count. Moreover,
the resizing will randomly initialize both the embedding vector for
each new token and the weight of the output layer, which will be
updated during the model training.

Model Training Our study explores two basic training strate-
gies: 1) directly training a model on the StMPy code dataset, re-
ferred to as SIMPY, and 2) sequentially training a model first on
the Python dataset and then on the SIMPy code dataset, referred to
as Python—SiMPy. If such basic strategies work, further improve-
ment in efficiently adapting Al-oriented grammar is completely
feasible. Moreover, we construct a control group: directly train-
ing a model on the Python code dataset, denoted as Python. The
performance of the two strategies should match or surpass the
model from the control group; otherwise, they are not practical. To
control the variable, all training sessions across the two strategies
and the control group are conducted under identical conditions,
including the training environment, initial model, and training
hyper-parameters. Notably, the SIMPY dataset is converted from the
Python dataset, ensuring no external data is involved. Moreover,
for the Python+SimPy setting, we vary the proportion of the StMPy
dataset used, i.e., 10%, 20%, 50%, and 100%, to assess the required
volume of data for effective fine-tuning.

4.2 Experiments of RQ2

We first present the experimental setup for RQ2, including the mod-
els used, evaluation metrics, and implementation details. Then, we
report the experimental results and answer the research questions.

4.2.1 Models. We adopt three widely used models in our research
community, namely CodeGen-NL, TinyLlama, and Pythia, whose
parameter sizes range between 350M and 1.1B. All these models
serve as the initial pre-trained model for our experiments. Though
these are not the latest state-of-the-art models, they suffice to vali-
date the feasibility of learning Al-oriented grammar like SIMPy. We
will further discuss the impact of this decision in Section 7.
CodeGen-NL: CodeGen, proposed by Salesfore [27], is an open-
sourced language model designed for code generation. It under-
goes a multi-phase training process on different datasets, where
the model is first trained with natural language datasets and then
code datasets. Our experiments utilize its natural language version
(CodeGen-350M-nl), produced after the initial phase of its training
process, as the foundation model to conduct our experiments.
TinyLlama: TinyLlama [51] is a compact 1.1B language model
pre-trained on around 3 trillion tokens, building on the architecture
and tokenizer of Llama 2 [41]. It shows competitive performance
compared to existing open-source language models of similar sizes.

Zhensu Sun, Xiaoning Du, Zhou Yang, Li Li, and David Lo

Table 3: The Pass@1 and Pass@ 10 of LLMs on Python and SiMPy
datasets under varied settings. Python and SiMPyY denote models
trained exclusively on respective datasets. Python—SiMPY refers to
sequential training on both datasets, with the parenthetical numbers
indicating the S1MPy dataset’s proportion involved in the training,.

Model Training Strategy Pass@1 | Pass@10
Python 4.51% 7.32%
100% SimMPyY 2.93% 5.49%
Python — 10% SiMPy 3.11% 3.66%
CodeGen-NL
Python — 20% SiMPY 3.66% 4.27%
Python — 50% SiMPY 3.96% 6.71%

Python — 100% SimMPY | 4.82% 9.15%

Python 10.00% 13.41%
100% SimMPY 5.91% 9.76%
) Python — 10% SiMPy 2.07% 3.66%
TinyLlama
Python — 20% SiMPy 3.23% 5.49%
Python — 50% SiMPy 5.73% 11.59%
Python — 100% SimMPY | 10.12% 14.02%
Python 5.79% 9.76%
100% SimMPY 7.01% 9.15%
) Python — 10% SimMPY 1.89% 2.44%
Pythia
Python — 20% SiMPy 3.11% 4.27%
Python — 50% SiMPY 4.21% 7.32%
Python — 100% SIMPY | 5.67% 10.00%

Pythia: Pythia [4] is a suite of LLMs, which is expected to be used
as the baseline for research studies and thus is designed close to
currently accepted common practices. Considering the capacity of
our computing resources, we use its 1B version.

4.2.2 Evaluation Metrics. We evaluate the model’s performance on
the code generation task with the Pass@k metric on HumanEval. To
compute Pass@k, k code samples are generated for each problem,
and a problem is considered solved if any of the k samples pass the
unit tests. We report the fraction of problems being successfully
solved. The HumanEval dataset [8] comprises 164 programming
problems, each with a function signature, a docstring, and multiple
test cases. Given the function signature and docstring, the model is
required to generate the code, which is then tested by executing
the test cases. Notably, the function signatures are written using
Python’s original grammar. When evaluating the model adapted
to SIMPY, we convert the function signature into SIMPY using the
code converter. Similarly, the model-generated SIMPY code is subse-
quently converted into Python to run test cases since the existing
testing framework is implemented for Python source code.

4.2.3 Implementation Details. In our experiments, we use the Hug-
gingface Transformers library [48] with Pytorch to implement the
models. The experiments of CodeGen-NL are performed on a ma-
chine with 48 vCPUs, 512GB RAM, and four RTX A5000 GPUs
(24GB RAM), while the other two models are trained on a machine
with 28 vCPUs, 200GB RAM, and two RTX A6000 GPUs (48GB
RAM). The hyper-parameters of the training are set referring to
CodeGen’s hyper-parameters: 8 batch size, 1.8e-4 learning rate, 0.1

Al Coders Are Among Us: Rethinking Programming Language Grammar Towards Efficient Code Generation

ISSTA °24, September 16-20, 2024, Vienna, Austria

%
[Human-centric Code }

[]
g Natural Language
; - -

H & Al System i

o

/ N

v \
Al-oriented Code | \

|
‘ Executor

() Program Results |/

nE' Converter

Al-oriented Code

g Natural Language

i Al System

‘ I‘/

s Program Results

i

M |
"
_a® Executor

Al-oriented Code

.

| £5 Converter
|

I ‘

0

A A v
{g Natural Language} { Human-centric Code J

Figure 4: LEFT: the workflow of the basic usage scenarios of Al-oriented grammar. RIGHT: the workflow of the extended usage scenarios of
Al-oriented grammar under DualCode, where the code executor of the Al system in the figure is not necessary.

weight decay, and 512 context length. During the inference for
evaluation, we set the temperature to 0.2 and the top-p to 0.95.

4.2.4 Results. Following the settings of the two strategies (SIMPY
and Python—S1MPY) and the control group (Python), we train the
CodeGen-NL, TinyLlama, and Pythia models, respectively. Finally,
for each of our initial models, we have six variations: one each for
Python and S1MPy, and four models for Python—SiMPY incorporat-
ing 10%, 20%, 50%, and 100% of the SIMPy dataset. The performance
of these models is evaluated through Pass@1 and Pass@10 metrics
on the HumanEval dataset.

We report the results in Table 3. Notably, the models trained
with SIMPY lag behind the Python baseline in terms of accuracy. For
example, the Pass@1 and Pass@10 of CodeGen (S1MPY) are respec-
tively 2.93% and 5.49%, lower than the ones of CodeGen (Python),
which are 4.51% and 7.32%. This could be attributed to SIMPY’s
limited expressiveness, constraining the models from leveraging
knowledge acquired from natural language datasets during pre-
training. Consequently, direct training with Al-oriented grammar
appears to be an impractical approach.

However, the sequential training strategy, starting with Python
and then incorporating SIMPY, yields comparable or even superior
accuracy to the control group. Specifically, CodeGen-NL, TinyL-
lama, and Pythia models trained with Python—100%S1mPy achieve
Pass@10 scores of 9.15%, 14.02%, and 10.00%, respectively, outper-
forming the control group’s 7.32%, 13.41%, and 9.76%. This sug-
gests a successful training with SIMPy, demonstrating the feasibility
of Al models learning Al-oriented grammar. Interestingly, we ob-
serve that the Pythia model, when trained exclusively with 100%
SimPy, surpasses the Python baseline on Pass@1. This highlights
the possibility of learning SIMPyY without relying on the sequential
training strategy. By varying the proportion of the StMPy dataset
in the Python—S1MPy setting, we found that a substantial dataset
is still required by the fine-tuning with SiMPy. For instance, TinyL-
lama (Python—50%S1MPY) scored 5.73% in Pass@1 and 11.59% in
Pass@10, still trailing behind the TinyLlama (Python) scores. We
will further discuss this finding in Section 8.

Answer to RQ2: Al models, when initially trained with the
original grammar and then the Al-oriented grammar, can
successfully learn the Al-oriented grammar while retaining
their accuracy. For instance, the CodeGen model, originally
trained with Python and achieving a 7.32% Pass@10, improved
to a 9.15% Pass@10 after the additional training with S1mPy.

5 USAGE SCENARIO (RQ3)

In this section, we address RQ3: How can Al-oriented grammar
support real-world scenarios? We first demonstrate the basic applica-
tion scenario of Al-oriented grammar, and subsequently introduce a
novel inference framework designed to broaden the applicability of
Al-oriented grammar, followed by an evaluation of the framework’s
additional latency.

5.1 Basic usage scenario

The source code, when written in Al-oriented grammar, becomes
challenging for human interpretation and is therefore not intended
for human display. Consequently, the application of Al-oriented
grammar is limited to scenarios where human users do not have
access to the generated code. A typical scenario is the Al agents,
such as AutoGPT [40] and LangChain [7], for regular users rather
than developers. For instance, an Al agent tasked with data col-
lection from a website would generate the required crawler script,
execute it to gather data, and present the outcomes to the user.
End users generally care more about the results than understand-
ing the underlying script since they lack programming knowledge.
Therefore, even without additional enhancement, models trained
with Al-oriented grammar can be effectively utilized in real-world
scenarios. We demonstrate this scenario on the left of Figure 4. In
this scenario, an Al-oriented code generated by the model can be
executed in two ways: 1) being translated into human-centric code
and then executed by its executor; 2) directly being executed by a
specific executor for the Al-oriented grammar. Notably, implement-
ing an executor specifically for Al-oriented grammar demands only
lightweight engineering efforts as the Al-oriented grammar and its
original grammar differ only at the syntax level. Thus, the second
method offers a more efficient solution.

ISSTA °24, September 16-20, 2024, Vienna, Austria

Table 4: Comparison of average conversion times between Python
and SiMPy, and the processing speed of the StarCoder tokenizer,
based on Huggingface Tokenizers.

Huggingface Converter
Token num
Encode Decode | To StMPYy To Python

[0, 100) 0.2ms 0.1ms 0.2ms 0.2ms
[100, 500) 0.7ms 0.6ms 0.9ms 0.8ms
[500, 2000) 2.4ms 2.2ms 3.4ms 3.1ms
[2000, 5000) 6.7ms 6.4ms 12.2ms 10.8ms
[5000, +o0) 23.0ms 23.7ms 75.4ms 57.4ms

5.2 Extended usage scenario

Despite the effectiveness of Al-oriented grammar in certain con-
texts, many code generation scenarios still require the involvement
of humans, where human-readable code is required. To fill this gap,
we propose an inference framework for code generation named
DualCode. DualCode enables human users to interact with code
in human-centric grammar, while the model still leverages the
efficiency of Al-oriented grammar during the inference process.
The fundamental concept of DualCode is to convert the code be-
tween Al-oriented grammar and the original grammar of the same
programming language. To achieve this goal, a rule-based code con-
verter should be employed to convert source code into Al-oriented
grammar for model comprehension and, inversely for user readabil-
ity. Such a converter is feasible since both the Al-oriented grammar
and original grammar describe the same AST. The identical AST
allows the code written in the two grammars to be equivalently
converted into each other based on the grammar rules.

We illustrate the workflow of DualCode on the right of Figure 4.
It employs two “gates”: an input converter and an output converter.
The input converter translates code written in human-centric gram-
mar into Al-oriented grammar for model processing. Similarly, the
output converter reverts Al-generated code into human-readable
code for user comprehension. Notably, this environment is only
for the code, where other inputs, such as natural language, are
unaffected. DualCode is a not complicated framework, enabling
the lightweight integration of Al-oriented grammar into existing
workflows of Al systems. Though being straightforward, it is pro-
posed and investigated for the first time, bridging the gap between
efficient Al-oriented code generation and human readability.

5.3 Experiments of RQ3

Given that the DualCode converter adds extra latency to the infer-
ence process, a significant concern arises: excessive latency could
render the system impractical for real-world applications. To ad-
dress the concern, we conduct experiments focusing on the con-
verter’s performance. Specifically, we measure the time taken to
convert Python code files into SIMPY and then back to Python using
the converter. As a reference, we evaluate the processing speed of
the StarCoder tokenizer, which is based on the widely acknowl-
edged Huggingface Tokenizers library [26]. For this experiment,
we categorized Python code files into five distinct groups, based on
their token counts, as follows: [0, 100), [100, 500), [500, 2000), [2000,
5000), and [5000, +c0). These token counts are determined using
the StarCoder tokenizer [23] on the Python code. We calculate the
average processing time for each group.

Zhensu Sun, Xiaoning Du, Zhou Yang, Li Li, and David Lo

The findings, presented in Table 4, indicate that the converter’s
speed is comparable to that of Huggingface Tokenizers. For code
files with fewer than 100 tokens, the converter’s processing time
for each conversion is a mere 0.2 ms, only 0.1 ms slower than the
Huggingface Tokenizers. For files containing 100 to 500 tokens,
the conversion is completed within 1.0 ms. This is not a significant
concern, given that over 95% of the dataset’s code files (sourced from
real-world repositories) are within the 5000-token range. Therefore,
we deduce that the latency induced by the converter is acceptably
minimal in most practical scenarios.

-

Answer to RQ3: Beyond the basic scenarios where human in-
teraction is not required, the application of Al-oriented gram-
mar can be substantially extended by incorporating the Dual-
Code framework. DualCode enables humans to continue using
human-centric grammar while Al models leverage the effi-
ciency of Al-oriented grammar. Notably, it imposes negligible
latency (under 1 ms for code up to 500 tokens).

6 RELATED WORK

Program Simplification Program simplification has emerged
as a valuable approach to enhance the efficiency of code mod-
els [5, 18, 33, 34, 39, 49]. This approach typically involves the elimi-
nation of less critical code tokens to streamline model processing.
For example, DietCode [52] removes the code tokens that receive the
fewest attention weights by CodeBert. Sivand [34] and P2IM [53]
simplify the input code according to the outputs of a supplemen-
tary model. While these methods considerably boost efficiency,
they unavoidably compromise accuracy due to the removal of cer-
tain code elements. In contrast, models with Al-oriented grammar,
though perhaps less efficient, are able to preserve or even improve
accuracy. Most importantly, existing simplification techniques are
irreversible, limiting their application to code understanding tasks
like summarization and retrieval, rather than code generation. Con-
versely, code in Al-oriented grammar can be effortlessly reverted
to its original form, thus suitable for various code-related tasks.
Tokenization of Source Code Modern LLMs usually preprocess
textual datasets using an open-vocabulary tokenization method,
Byte-Pair Encoding (BPE) [38]. BPE tokenizes text into subwords
based on their frequency in the text corpus, offering a balance
between the granularity of tokens and vocabulary breadth. Karam-
patsis et al. [20] first identify the effectiveness of BPE on source
code. CodeT5 reveals that BPE trained on source code corpus can
reduce over 30% of tokens for code generation, compared with the
one trained on natural language corpus. Subsequently, all major
LLMs for code generation, such as CodeBERT [12], CodeT5 [47],
SantaCoder [2], StarCoder [23] and CodeLlama [37], adopt BPE as
the tokenization method. Further enhancements to BPE for source
code have been proposed. For example, Chirkova [10] suggests that
clustering punctuation characters into single tokens can reduce
average token length by 17% without impacting model performance.
Notably, even though the tokenizers are optimized for source code,
they still need to deal with the unnecessary tokens introduced by
the human-centric grammar. Al-oriented grammar optimizes the
representation of source code in a more fundamental way, which is
orthogonal to these existing tokenization methods.

Al Coders Are Among Us: Rethinking Programming Language Grammar Towards Efficient Code Generation

7 THREATS TO VALIDITY

Constrained Model Selection Our experimental scope in RQ2 is
restricted by our computational resources, limiting our evaluation
to models with around 1B parameters. These models are relatively
modest in scale. However, while the model size is expanding, the
fundamental issue of computation waste caused by human-centric
code grammar remains unaddressed. Therefore, the insights derived
from our experiments with smaller models are still highly relevant
for understanding inefficiency issues in larger models.

Limited Programming Language Our research primarily inves-
tigates the implementation of Al-oriented grammar in Python, a
language widely utilized by existing LLMs for programming tasks.
This initial exploration has shown that Al-oriented grammar ef-
fectively reduces computational costs during inference. However,
the conclusions drawn from Python may not generalize to other
programming languages. We thus leave the exploration of its im-
plementation in other languages as future work.

Inefficient Implementation We implement a proof-of-concept
converter to convert the code between SIMPY and Python. While
this converter provides seamless translation, its efficiency is not
optimized. For instance, it is developed in Python, which is less
efficient compared to languages like C++. This aspect could poten-
tially result in an underestimation of the converter’s performance
in our experimental evaluations.

8 DISCUSSION

Limitations in practice Though extending the applicability of
Al-oriented grammar, DualCode relies on a rule-based converter.
The converter, we implemented for StMPy, is AST-based, which im-
plicitly requires the input and output code of LLMs under the Dual-
Code framework to satisfy the grammar correctness. For the output,
grammar correctness is a fundamental expectation for a qualified
LLM-based assistant. Thus, this requirement from DualCode is not
an additional constraint set to the model but aligns with the goal
of a reliable Al service. However, it poses challenges when dealing
with user-provided input, which may not always be grammatically
correct. It is not a concern to models handling natural-language-to-
code tasks. However, the requirement may limit the application of
S1MPY when some tasks involve partial source code as input, such
as LLM-based code completion. Addressing this limitation could
involve developing an error-tolerant converter or grammar, which
is a crucial direction for future research.

Learning the Al-oriented grammar The learning of Al-oriented
grammar could be a tricky task. In our experiments, we demon-
strate the effectiveness of fine-tuning AI models with SIMPY using
the next token prediction task. However, this simple fine-tuning
strategy requires a large number of SIMPY samples, 100% of the
dataset in our experiments. A more efficient adaptation process
would significantly enhance the utility of Al-oriented grammar.
However, current research on how Al models learn code grammar
is still limited. Although studies [9, 25, 45] have shown that LLMs
typically grasp code grammar knowledge in their initial layers, the
exact learning mechanism remains unclear. Therefore, a thorough
analysis in this area is much needed.

Utility of Al-oriented grammar In this paper, we demonstrate
the effectiveness of the sequential training scheme, where the model

ISSTA °24, September 16-20, 2024, Vienna, Austria

is initially trained with the original grammar and then the Al-
oriented grammar. It achieves an equivalent, or even improved,
performance compared to the model trained merely with the orig-
inal grammar. Such a training method incurs an increase in the
cost of the model training. For example, training CodeGen on the
original Python dataset costs 183,628 training steps, and 100,288
additional steps are taken during the further finetuning on the 100%
SimPy dataset. Nevertheless, mastering Al-oriented grammar still
reduces energy consumption in the long run. Training is performed
only once or occasionally, while inference tasks can be continuous
and massive after the system is deployed. The post-deployment op-
erational cost is a primary component of the overall cost, sometimes
reaching 90% of total expenses [11]. Consequently, despite the ad-
ditional costs incurred during training, implementing Al-oriented
grammar remains highly beneficial from a practical standpoint.

9 CONCLUSION AND FUTURE WORK

In this paper, we, for the first time, propose the concept of Al-
oriented grammar to address the inefficiency of Al coders in pro-
cessing the code written in human-centric grammar. Through an
empirical study guided by three research questions, we success-
fully demonstrate the feasibility and potential of this novel concept.
During our research, we have developed the first-ever Al-oriented
Python grammar. Additionally, we introduced an inference frame-
work designed to empower models to effectively process both AI-
oriented and human-centric grammars.

As an emerging field, Al-oriented grammar presents numerous
unexplored questions. For example, an interesting finding from our
experiments is that models trained with Al-oriented grammar can
even improve the model’s accuracy in code generation tasks. This
emphasizes the critical role of grammar as a foundational element
for LLMs in grasping code semantics. Designing grammars that
are inherently more comprehensible to Al models could signifi-
cantly enhance their performance. Our current research provides
a preliminary insight into this aspect, opening doors for in-depth
future studies. Additionally, the process of simplifying grammar, as
exemplified by our manual creation of S1MPy, raises the question
of whether an automated approach could create optimal grammar
rules for Al models. A potential solution for simplifying the gram-
mar could be iteratively searching for grammar tokens/structures
that can be removed with the help of a parser generator. Moreover,
saving the training cost for teaching LLMs Al-oriented grammar is
also of great practical value, where a more efficient training method
for LLMs to learn new programming grammar is urgently needed.
We, therefore, call for the software engineering community to en-
gage further with this promising topic, recognizing its potential to
revolutionize the field of Al coders.

ACKNOWLEDGMENTS

We thank Dr Zhe Hou for the helpful discussion when preparing the
manuscript. This research / project is supported by Xiaoning Du’s
Google Research Scholar Program Award and the National Research
Foundation, under its Investigatorship Grant (NRF-NRFI08-2022-
0002). Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not
reflect the views of National Research Foundation, Singapore.

ISSTA °24, September 16-20, 2024, Vienna, Austria

REFERENCES

(1]

[2

—

[9

=

[10]

[11

[12

[13

[14]
[15

[16]

[17

(18]

[19

[20

DeepSeek Al 2023. DeepSeek Coder: Let the Code Write Itself. https://github.
com/deepseek-ai/DeepSeek-Coder.

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher
Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu,
Manan Dey, et al. 2023. SantaCoder: don’t reach for the stars! arXiv preprint
arXiv:2301.03988 (2023).

Google DeepMind AlphaCode Team. 2023. AlphaCode 2 Technical Report.
https://storage.googleapis.com/deepmind-media/AlphaCode2/AlphaCode2_
Tech_Report.pdf.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley,
Kyle O’Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023. Pythia: A suite for analyzing
large language models across training and scaling. In International Conference on
Machine Learning. PMLR, 2397-2430.

Nghi D. Q. Bui, Y. Yu, and Lingxiao Jiang. 2019. AutoFocus: Interpreting Attention-
Based Neural Networks by Code Perturbation. 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE) (2019), 38—41. https://api.
semanticscholar.org/CorpusID:208877064

Casey Casalnuovo, Earl T. Barr, Santanu Kumar Dash, Prem Devanbu, and Emily
Morgan. 2020. A Theory of Dual Channel Constraints. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering: New Ideas and
Emerging Results (Seoul, South Korea) (ICSE-NIER °20). Association for Computing
Machinery, New York, NY, USA, 25-28. https://doi.org/10.1145/3377816.3381720
Harrison Chase. 2022. LangChain. https://github.com/langchain-ai/langchain
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared
Kaplan, Harrison Edwards, Yura Burda, Nicholas Joseph, Greg Brockman, Alex
Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov,
Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, David W. Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William H. Guss, Alex Nichol,
Igor Babuschkin, S. Arun Balaji, Shantanu Jain, Andrew Carr, Jan Leike, Joshua
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew M. Knight,
Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Eval-
uating Large Language Models Trained on Code. ArXiv abs/2107.03374 (2021).
https://api.semanticscholar.org/CorpusID:235755472

Nuo Chen, Qiushi Sun, Renyu Zhu, Xiang Li, Xuesong Lu, and Ming Gao. 2022.
CAT-probing: A Metric-based Approach to Interpret How Pre-trained Models for
Programming Language Attend Code Structure. In Conference on Empirical Meth-
ods in Natural Language Processing. https://api.semanticscholar.org/CorpusID:
252780909

Nadezhda Chirkova and Sergey Troshin. 2023. CodeBPE: Investigating Subtok-
enization Options for Large Language Model Pretraining on Source Code. ArXiv
abs/2308.00683 (2023). https://api.semanticscholar.org/CorpusID:252600018
Radosvet Desislavov, Fernando Martinez-Plumed, and José Hernandez-Orallo.
2023. Trends in Al inference energy consumption: Beyond the performance-vs-
parameter laws of deep learning. Sustainable Computing: Informatics and Systems
38 (2023), 100857

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A Pre-Trained Model for Programming and Natural Languages. ArXiv
abs/2002.08155 (2020). https://api.semanticscholar.org/CorpusID:211171605
Seymour Ginsburg and Joseph S. Ullian. 1966. Ambiguity in context free lan-
guages. J. ACM 13 (1966), 62-89. https://api.semanticscholar.org/CorpusID:
5851601

Google. 2023. ChatGPT. https://bard.google.com/.

Dick Grune and Ceriel J. H. Jacobs. 2007. Parsing Techniques - A Practical Guide.
In Monographs in Computer Science. https://api.semanticscholar.org/CorpusID:
33077869

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,
David Lo, John Grundy, and Haoyu Wang. 2023. Large Language Models for
Software Engineering: A Systematic Literature Review. arXiv:2308.10620 [cs.SE]
https://www.wsj.com/tech/ai/ais-costly-buildup-could-make-early-products-a-
hard-sell-bdd29b9f [n. d.].

Yufan Huang, Mengnan Qi, Yongqiang Yao, Maoquan Wang, Bin Gu, Colin B.
Clement, and Neel Sundaresan. 2023. Program Translation via Code Distilla-
tion. ArXiv abs/2310.11476 (2023). https://api.semanticscholar.org/CorpusID:
264289043

Jared Kaplan, Sam McCandlish, T. J. Henighan, Tom B. Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeff Wu, and Dario Amodei. 2020. Scaling
Laws for Neural Language Models. ArXiv abs/2001.08361 (2020). https://api.
semanticscholar.org/CorpusID:210861095

Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and
Andrea Janes. 2020. Big Code != Big Vocabulary: Open-Vocabulary Models
for Source Code. 2020 IEEE/ACM 42nd International Conference on Software

[21]

[22

[23

[25]

[26

@
£,

%
&

[40

[41]

Zhensu Sun, Xiaoning Du, Zhou Yang, Li Li, and David Lo

Engineering (ICSE) (2020), 1073-1085. https://api.semanticscholar.org/CorpusID:
211161525

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos
Muiioz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf,
Dzmitry Bahdanau, Leandro von Werra, and Harm de Vries. 2022. The Stack: 3
TB of permissively licensed source code. Preprint (2022).

Bernard Lang. 1974. Deterministic Techniques for Efficient Non-Deterministic
Parsers. In International Colloqguium on Automata, Languages and Programming.
https://api.semanticscholar.org/CorpusID:27069587

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian
Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene,
Mishig Davaadorj, Joel Lamy-Poirier, Jodo Monteiro, Oleh Shliazhko, Nicolas
Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar Umap-
athi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra
Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca,
Manan Dey, Zhihan Zhang, Nourhan Fahmy, Urvashi Bhattacharyya, W. Yu,
Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov,
Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey
Schoelkopf, Jana Ebert, Tri Dao, Mayank Mishra, Alexander Gu, Jennifer Robin-
son, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Mufioz Ferrandis,
Sean M. Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de
Vries. 2023. StarCoder: may the source be with you! ArXiv abs/2305.06161 (2023).
https://api.semanticscholar.org/CorpusID:258588247

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu,
Chongyang Tao, Jing Ma, Qingwei Lin, and Daxin Jiang. 2023. WizardCoder: Em-
powering Code Large Language Models with Evol-Instruct. ArXiv abs/2306.08568
(2023). https://api.semanticscholar.org/CorpusID:259164815

Wei Ma, Mengjie Zhao, Xiaofei Xie, Qiang Hu, Shangqing Liu, Jiexin Zhang,
Wenhan Wang, and Yang Liu. 2022. Is Self-Attention Powerful to Learn Code
Syntax and Semantics? ArXiv abs/2212.10017 (2022). https://api.semanticscholar.
org/CorpusID:254877330

Anthony Moi and Nicolas Patry. 2023. HuggingFace’s Tokenizers. https://github.
com/huggingface/tokenizers

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Haiquan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis. In International Conference
on Learning Representations. https://api.semanticscholar.org/CorpusID:252668917
OpenAl 2023. ChatGPT. https://chat.openai.com/.

OpenAl 2023. GPT-3.5. https://platform.openai.com/docs/models/gpt-3-5.
OpenAl 2023. GPT-4 Technical Report. ArXiv abs/2303.08774 (2023). https:
//api.semanticscholar.org/CorpusID:257532815

Tim Peters. 2023. PEP 20 — The Zen of Python. https://peps.python.org/pep-
0020/.

Python. 2023. Full Grammar specification. https://docs.python.org/3/reference/
grammar.html.

Md Rafiqul Islam Rabin, Vincent J. Hellendoorn, and Mohammad Amin Alipour.
2021. Understanding neural code intelligence through program simplification.
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (2021).
https://api.semanticscholar.org/CorpusID:235359051

Md Rafiqul Islam Rabin, Aftab Hussain, and Mohammad Amin Alipour. 2022.
Syntax-guided program reduction for understanding neural code intelligence
models. Proceedings of the 6th ACM SIGPLAN International Symposium on Machine
Programming (2022). https://api.semanticscholar.org/CorpusID:249191662
Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. https:
//api.semanticscholar.org/CorpusID:160025533

Repilt. 2023. ReplitLM. https://github.com/replit/replitLM.

Baptiste Roziére, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoging
Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, I.
Evtimov, Joanna Bitton, Manish P Bhatt, Cristian Canton Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre D’efossez, Jade Copet, Faisal Azhar, Hugo Touvron,
Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. 2023.
Code Llama: Open Foundation Models for Code. ArXiv abs/2308.12950 (2023).
https://api.semanticscholar.org/CorpusID:261100919

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2015. Neural Machine
Translation of Rare Words with Subword Units. ArXiv abs/1508.07909 (2015).
https://api.semanticscholar.org/CorpusID:1114678

Chaoxuan Shi, Tingwei Zhu, Tian Zhang, Jun Pang, and Minxue Pan. 2023.
Structural-semantics Guided Program Simplification for Understanding Neural
Code Intelligence Models. Proceedings of the 14th Asia-Pacific Symposium on
Internetware (2023). https://api.semanticscholar.org/CorpusID:263672536
Significant Gravitas. [n.d.]. AutoGPT. https://github.com/Significant-Gravitas/
AutoGPT

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi,
Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti

https://github.com/deepseek-ai/DeepSeek-Coder
https://github.com/deepseek-ai/DeepSeek-Coder
https://storage.googleapis.com/deepmind-media/AlphaCode2/AlphaCode2_Tech_Report.pdf
https://storage.googleapis.com/deepmind-media/AlphaCode2/AlphaCode2_Tech_Report.pdf
https://api.semanticscholar.org/CorpusID:208877064
https://api.semanticscholar.org/CorpusID:208877064
https://doi.org/10.1145/3377816.3381720
https://github.com/langchain-ai/langchain
https://api.semanticscholar.org/CorpusID:235755472
https://api.semanticscholar.org/CorpusID:252780909
https://api.semanticscholar.org/CorpusID:252780909
https://api.semanticscholar.org/CorpusID:252600018
https://api.semanticscholar.org/CorpusID:211171605
https://api.semanticscholar.org/CorpusID:5851601
https://api.semanticscholar.org/CorpusID:5851601
https://bard.google.com/
https://api.semanticscholar.org/CorpusID:33077869
https://api.semanticscholar.org/CorpusID:33077869
https://arxiv.org/abs/2308.10620
https://api.semanticscholar.org/CorpusID:264289043
https://api.semanticscholar.org/CorpusID:264289043
https://api.semanticscholar.org/CorpusID:210861095
https://api.semanticscholar.org/CorpusID:210861095
https://api.semanticscholar.org/CorpusID:211161525
https://api.semanticscholar.org/CorpusID:211161525
https://api.semanticscholar.org/CorpusID:27069587
https://api.semanticscholar.org/CorpusID:258588247
https://api.semanticscholar.org/CorpusID:259164815
https://api.semanticscholar.org/CorpusID:254877330
https://api.semanticscholar.org/CorpusID:254877330
https://github.com/huggingface/tokenizers
https://github.com/huggingface/tokenizers
https://api.semanticscholar.org/CorpusID:252668917
https://chat.openai.com/
https://platform.openai.com/docs/models/gpt-3-5
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://peps.python.org/pep-0020/
https://peps.python.org/pep-0020/
https://docs.python.org/3/reference/grammar.html
https://docs.python.org/3/reference/grammar.html
https://api.semanticscholar.org/CorpusID:235359051
https://api.semanticscholar.org/CorpusID:249191662
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://github.com/replit/replitLM
https://api.semanticscholar.org/CorpusID:261100919
https://api.semanticscholar.org/CorpusID:1114678
https://api.semanticscholar.org/CorpusID:263672536
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT

Al Coders Are Among Us: Rethinking Programming Language Grammar Towards Efficient Code Generation

[42

[43]

[44]

[45]

[46]

[47]

Bhosale, Daniel M. Bikel, Lukas Blecher, Cristian Cantén Ferrer, Moya Chen,
Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian
Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony S. Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel M. Kloumann, A. V. Korenev, Punit Singh Koura, Marie-Anne
Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,
Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie,
Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, R. Subramanian, Xia Tan, Binh Tang, Ross Taylor,
Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2: Open
Foundation and Fine-Tuned Chat Models. ArXiv abs/2307.09288 (2023). https:
//api.semanticscholar.org/CorpusID:259950998

tree sitter. 2023. tree-sitter/tree-sitter: An incremental parsing system for pro-
gramming tools. https://github.com/tree-sitter/tree-sitter.

Sergey Troshin and Nadezhda Chirkova. 2022. Probing Pretrained Models of
Source Codes. ArXiv abs/2202.08975 (2022). https://api.semanticscholar.org/
CorpusID:246996634

Guido van Rossum, Barry Warsaw, and Alyssa Coghlan. 2023. PEP 8 — Style
Guide for Python Code. https://peps.python.org/pep-0008/.

Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hairong Jin.
2022. What Do They Capture? - A Structural Analysis of Pre-Trained Language
Models for Source Code. 2022 IEEE/ACM 44th International Conference on Software
Engineering (ICSE) (2022), 2377-2388. https://api.semanticscholar.org/CorpusID:
246823289

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li,
and Steven C. H. Hoi. 2023. CodeT5+: Open Code Large Language Models
for Code Understanding and Generation. ArXiv abs/2305.07922 (2023). https:
//api.semanticscholar.org/CorpusID:258685677

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Un-
derstanding and Generation. ArXiv abs/2109.00859 (2021). https://api.

[48

=
)

[50

(51

[52

[53

ISSTA °24, September 16-20, 2024, Vienna, Austria

semanticscholar.org/CorpusID:237386541

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational
Linguistics, Online, 38-45. https://www.aclweb.org/anthology/2020.emnlp-
demos.6

Zhou Yang, Zhensu Sun, Terry Yue Zhuo, Prem Devanbu, and David Lo. 2024. Ro-
bustness, Security, Privacy, Explainability, Efficiency, and Usability of Large Lan-
guage Models for Code. ArXiv abs/2403.07506 (2024). https://api.semanticscholar.
org/CorpusID:268364103

Zhengran Zeng, Hanzhuo Tan, Haotian Zhang, Jing Li, Yuqun Zhang, and Ling-
ming Zhang. 2022. An Extensive Study on Pre-Trained Models for Program
Understanding and Generation. In Proceedings of the 31st ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis (Virtual, South Korea)
(ISSTA 2022). Association for Computing Machinery, New York, NY, USA, 39-51.
https://doi.org/10.1145/3533767.3534390

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. 2024. TinyLlama:
An Open-Source Small Language Model. arXiv:2401.02385 [cs.CL]

Zhaowei Zhang, Hongyu Zhang, Beijun Shen, and Xiaodong Gu. 2022. Diet code
is healthy: simplifying programs for pre-trained models of code. Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (2022). https://api.semanticscholar.org/
CorpusID:250113729

Yunhui Zheng, Sahil Suneja, Yufan Zhuang, Alessandro Morari, and Jim Laredo.
2020. Probing model signal-awareness via prediction-preserving input minimiza-
tion. Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (2020).
https://api.semanticscholar.org/CorpusID:227227733

https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://github.com/tree-sitter/tree-sitter
https://api.semanticscholar.org/CorpusID:246996634
https://api.semanticscholar.org/CorpusID:246996634
https://peps.python.org/pep-0008/
https://api.semanticscholar.org/CorpusID:246823289
https://api.semanticscholar.org/CorpusID:246823289
https://api.semanticscholar.org/CorpusID:258685677
https://api.semanticscholar.org/CorpusID:258685677
https://api.semanticscholar.org/CorpusID:237386541
https://api.semanticscholar.org/CorpusID:237386541
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://api.semanticscholar.org/CorpusID:268364103
https://api.semanticscholar.org/CorpusID:268364103
https://doi.org/10.1145/3533767.3534390
https://arxiv.org/abs/2401.02385
https://api.semanticscholar.org/CorpusID:250113729
https://api.semanticscholar.org/CorpusID:250113729
https://api.semanticscholar.org/CorpusID:227227733

	Abstract
	1 Introduction
	2 Motivation
	2.1 Human-centric Grammar Design
	2.2 AI-Oriented Grammar
	2.3 Python Code Dataset for Our Study

	3 Token Reduction (RQ1)
	3.1 An AI-oriented grammar for Python
	3.2 Experiments of RQ1

	4 Model Training (RQ2)
	4.1 Training Strategies
	4.2 Experiments of RQ2

	5 Usage Scenario (RQ3)
	5.1 Basic usage scenario
	5.2 Extended usage scenario
	5.3 Experiments of RQ3

	6 Related Work
	7 Threats to Validity
	8 Discussion
	9 Conclusion and Future work
	Acknowledgments
	References

