
1

Understanding the Modeling of Computer Network

Delays using Neural Networks
Albert Mestres, Eduard Alarcón, Yusheng Ji and Albert Cabellos-Aparicio

Abstract—Recent trends in networking are proposing the use of
Machine Learning (ML) techniques for the control and operation
of the network. In this context, ML can be used as a computer
network modeling technique to build models that estimate the
network performance. Indeed, network modeling is a central
technique to many networking functions, for instance in the
field of optimization, in which the model is used to search a
configuration that satisfies the target policy. In this paper, we
aim to provide an answer to the following question: Can neural
networks accurately model the delay of a computer network as a
function of the input traffic? For this, we assume the network as a
black-box that has as input a traffic matrix and as output delays.
Then we train different neural networks models and evaluate its
accuracy under different fundamental network characteristics:
topology, size, traffic intensity and routing. With this, we aim to
have a better understanding of computer network modeling with
neural nets and ultimately provide practical guidelines on how
such models need to be trained.

Index Terms—KDN, SDN, ML, Networking, Modeling

I. INTRODUCTION

The use of Machine Learning (ML) techniques in the

networking field is gaining momentum. One of the more

promising areas is to help and improve the control and

operation of computer networks. Although this idea is not

new (see D.Clark et al.) [1] this trend is becoming more

popular thanks to two enabling technologies: Software-Defined

Networking (SDN) [2] and Network Analytics (NA) [3].

Indeed, the rise of SDN transforms the network from an

inherently distributed system to a (logically) centralized one

that can be fully controlled through the SDN controller. At the

same time, the NA field is developing techniques to monitor

and obtain precise metrics of the network behavior. When

combined, SDN and NA provide a central entity that offers

a rich view and full control over the network where to apply

ML.

In this context, learning techniques can be used to provide

automatic control of the network via the SDN controller

thanks to the network monitoring information obtained via

the NA platform. This new networking paradigm is known as

Knowledge-Defined Networking (KDN) [4].

Under the KDN paradigm, there are a wide variety of use-

cases for taking advantage of ML techniques in computer

networks. Among all such potential use-cases in this paper,

A. Mestres, and A. Cabellos-Aparicio are with the Computer Ar-
chitecture Department, Universitat Politècnica de Catalunya (e-mail:
{amestres/acabello}@ac.upc.edu)

E. Alarcón is with the Electrical Engineering Department, Universitat
Politècnica de Catalunya (e-mail: eduard.alarcon@upc.edu)

Yusheng Ji is with NII, Japan (e-mail: kei@nii.ac.jp)

we focus on a single one: modeling of network delays using

neural networks(NNs). The main reason for this is that network

modeling is central to many network operations, particularly

in the field of network optimization. Typically network op-

timization algorithms require a network model over which

the optimization techniques operate to find the best element

(e.g., [5], [6]).

In this paper we aim to answer the following question:

Can neural networks (NNs) accurately model the delay of a

computer network as a function of the input traffic? For this,

we assume the network as a black-box that has as input traffic

and as output delays. This question is fundamental to network

modeling. Indeed both analytical (e.g., queuing models) and

computational models (e.g., simulators) are well-known tech-

niques used to estimate the performance of a network based on

its input traffic. In this paper we posit that NNs can represent a

third pillar in the area of network modeling, providing relevant

advantages towards traditional techniques. Indeed with NNs,

we can build a ‘digital twin’ of the real infrastructure, this

twin can then be used for optimization, validation, prediction,

etc. To the best of our knowledge, this is the first attempt to

model a computer network using NNs.

Following this approach, in this paper, we first design a set

of synthetic experiments and use different hyper-parameters

and computer networks to understand how accurate are NNs

when modeling computer networks. With this, we learn a set

of practical guidelines that help us understand how NNs model

computer networks. Finally, we validate our guidelines by

effective modeling with a NN a realistic network loaded with

realistic traffic matrices.

This article is organized as follows. Section II presents a

use-case in which modeling the delay of a computer network

allows to optimize its performance. In Section III, we model

the specific problem we address in this paper. The related state

of the art is presented in Section IV. In Section V, we introduce

the methodology we followed to obtain the different datasets

from simulated networks and to train different NN models.

The different experimental results for different networks and

NN models are presented in Section VI. In Section VII, we

apply the methodology described in this paper to model a

larger and more realistic network. Finally, in Section VIII

and Section IX, we analyze the different experiments results

obtained and conclude this work.

II. A USE-CASE OF ML FOR NETWORK CONTROL AND

OPERATION

Network modeling is a well-established field that provides

techniques which are central to a wide range of communica-

ar
X

iv
:1

80
7.

08
65

2v
1 

 [
cs

.N
I]

  2
3 

Ju
l 2

01
8



2

ANN 

Network 

Model

Optimizer

SDN Network

Traffic 

change

Configuration Performance

Optimal

configuration

Target policy

Knowledge Plane

Fig. 1. Graphical representation of the optimization use-case.

tion functions. Typically, techniques such as simulation and

analytical tools are used to build computer network models.

In our use-case, the network model is built using neural

networks (NNs), specifically trained from collected or network

simulated data. This model can be understood as a ‘digital

twin’ of the real networking infrastructure. As such it captures

the fundamental relationship between network parameters, for

instance, it can model the function that relates traffic load,

routing policy with the resulting performance.

As an example and in the context of network optimization,

the ‘digital twin’ can be used to estimate the performance of

any possible incoming traffic and configuration (see Fig. 1

for a schematic representation). Then traditional optimization

algorithms (such as hill-climbing) can be used in combination

with the ‘digital twin’ to find the optimal configuration that

results in the desired performance. Beyond optimization, the

‘digital twin’ can also be used for validation, prediction,

recommendation, etc.

In the context of this general use-case, this paper aims to

have a better understanding on how NNs can learn from net-

work data, how accurate they are, which are the fundamental

challenges and ultimately to provide practical guidelines.

III. PROBLEM STATEMENT

In this section, we describe the problem statement that we

aim to address in this paper. Figure 2 summarizes the problem

statement using three layers. Note that in this paper, as a first

step to understand how can NNs model the behavior of the

network, we consider the configuration as constant and we

build the delay model only as a function of the traffic.

The bottom layer represents the real-world physical network

infrastructure that has certain fundamental characteristics, such

as topology, size, routing, etc. The middle layer represents

the system abstraction in which the network is assumed as

a black-box, traffic ingresses the box and egresses it with a

certain average delay. The traffic is described by stochastic

distributions, both the inter-arrival process and the packet

length process. These stochastic processes are combined in

the network, which is a deterministic complex system with

certain properties (topology, routing, etc) and memory when

random processes such as physical errors are not taken into

account.

Finally, the top layer represents the NN that models the

computer network performance. The NN produces estimates of

the average end-to-end delay for all pairs of nodes considering

Communication

Network

System

Abstraction

Machine Learning

Architecture

- Inter-arrival processes

- Packet-length processes

(Stochastic processes)

Deterministic 

System 

with Memory

TRAFFICs DELAYs

time
mean

mean

time

- Delay processes

(Stochastic processes)

Network

topology

Routing

policy

Network

properties

Nodes are traffic generators, 

consumers and routers

- Ti,j

- T…,…
- TN,N-1

- TN,N

- T1,1

- T1,2

- T1,..

- T1,N

- Di,j

- D…,…
- DN,N-1

- DN,N

- D1,1

- D1,2

- D1,..

- D1,N

ML model and learning technique

ex: ANN

Fig. 2. Graphical representation of the problem statement addressed in this
paper.

the input traffic as a traffic matrix [ingress, egress]. The

network characteristics (routing, topology, etc) are hidden

from the NN, and hence it is trained only for one particular

configuration of the network infrastructure that is, a certain

topology, routing, etc.

Specifically, the function we aim to model can be expressed

as:
D = f(T)

in which D and T are N × N matrices, the first one
representing the average delay between the i (row) node and

the j (column) node, and the second one representing the

amount of traffic between i and j in an N nodes network. The

delay from i to j is determined by the quantity of traffic sent

between these nodes and the quantity of traffic sent between

other nodes that share part of the path.

Figure 3 shows the delay function we aim to learn (fit) with

a NN in a very simple network topology (see inside the figure).

In this example, only two nodes generate traffic which is sent

to a third node. Specifically, the figure represents the average

delay from 1 to R as a function of this traffic when the node

2 is heavily massively traffic.

In real networks, this function becomes much more com-

plex, since it depends on the state of the queues of the nodes

of the path followed by each pair of nodes, which depends

on the traffic sent among a big number of pair of nodes. In

other words, Figure 3 exemplifies the function we aim to fit

with NNs for a simple one dimension problem; however, in

real networks, this is a high dimensionality function.

Specifically, the main questions that we aim to address in

this paper are:

• Can we train a NN to produce accurate estimates of the

mean end-to-end delay for all pairs of nodes considering

the input traffic matrix (ingress, egress)?

• Which is the impact of fundamental network characteris-

tics (topology, routing, size, traffic intensity) concerning

the accuracy of the NN?

• Can we derive some guidelines to build the NN models?

For example, what is the architecture of the NN model



3

0 0.5 1 1.5 2

Traffic [normalized by the capacity]

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

2

1
R

D
e

la
y
 [

ti
m

e
 u

n
it
s
]

Fig. 3. Simple example of the function to learn

that best estimates of the delay?

IV. STATE OF THE ART

The main goal of this paper is to understand if a NN can be

used for network modeling and to provide practical guidelines

for NN modeling in this scenario.

In the field of network modeling, there are two fundamental

approaches: analytical and computational models (simulation)

techniques. As for analytical techniques, Markov chain the-

ory has been widely used in queuing theory to model the

behavior of a single queue by assuming certain stochastic

proprieties of the job arrival and job completion processes (ex.

M/M/1, M/D/1...). These models have been extended to model

networks of nodes, i.e., queuing networks [7]. Examples of

these theories are: Jackson Networks, Gordon-Newell theorem,

Mean value analysis, Buzen’s algorithm, Kelly network, G-

network, BCMP network [8]. Computational models are also

another popular technique to model the behavior of networks.

Typically simulators (such as [9]) operate either at packet or

flow level and simplify the network protocols they simulate.

Machine Learning mechanisms have been used in the field

of communications, and such techniques have been used

extensively in the area of traffic analysis [10], network se-

curity [11] and root-cause analysis [12]. Additionally, some

works propose the use of Reinforcement Learning techniques

for routing optimization [13]. In a recent paper [14], the

authors describe different use-cases for ML applied to network

and among then, discuss NN as a modeling technique for

computer networks.

Similarly to [14], in this paper, we advocate that NNs

represent a third pillar in the field of network modeling. NNs

can efficiently complement existing analytical and computa-

tional techniques providing important advantages. To the best

of our knowledge, this is the first attempt to experimentally

evaluate the use of NNs to model the performance of computer

networks.

V. METHODOLOGY

In this section, we detail the methodology used to under-

stand if a NN can estimate the average delay of a computer

network as a function of the traffic matrix.

Space exploration:
- Topology 
- Network Size
- Traffic Characteristics
- Saturation

Evaluate the accuracy
Which is the relation 

between accuracy and 
the fundamental 
network properties?

Data
Set

• ANN
• Polynomial R.

Supervised 
Learning

10,000 samples of:
- Traffic Matrix
- Resulting delay Matrix

ResultsSimulations

Fig. 4. Scheme of the methodology followed in this work

A. Overview

Figure 4 shows an overview of the methodology. To ex-

perimentally analyze the accuracy of the NN, we generate

different datasets by means of simulations, in each dataset we

change different network characteristics: traffic distribution,

traffic intensity, topology, size and routing policy and measure

the average delay.

Once we have generated the dataset we use them to train

a set of NN models, then we evaluate its accuracy using the

cross-validation technique. We split the dataset into three sets,

the training set with 60% of the samples, the validation set

with 20% of the samples and the test set with the remaining

20% of the samples. The training set is used to optimize

the ML model, the validation set is used to evaluate the

model during the training phase, and the test set is used to

provide an independent evaluation of the performance. With

this, we compare the average delay estimated by the NN model

with the one measured from the simulator. To make a fair

comparison, we subtract the unavoidable variance caused by

the averaging process from each result.

Ultimately, we want to understand both the accuracy of the

NN and its relation to fundamental characteristics of networks:

traffic distribution, traffic intensity, topology, size and routing

policy.

B. Network Simulations

In order to generate the dataset, we use the Omnet++

simulator (version 4.6) [15], in each simulation we measure

the average end-to-end delay during 16k units of time for

all pairs of nodes. The transmission speed of all links in the

network is set to 10 kilobits per unit of time, and the average

size of the packets is 1 kilobits. We explore different network

and traffic parameters to evaluate how these parameters affect

the modeling capabilities when learning the network delay

under different networks operating under different regimes of

saturation and packet length.

Specifically, for the dataset we consider the following

parameters:

• Topology: We explore three different network topologies:

unidirectional ring, star, and scale-free networks. These

three topologies present different connectivities which

may affect the learning capabilities.



4

• Network size: We study networks from 3 to 15 nodes

where all nodes are active transmitters and receivers.

• Traffic Distributions: We evaluate four different packet

length distributions: deterministic (constant), uniform,

binomial and Poisson using a fixed average packet length.

In all the cases the inter-arrival time is exponential.

• Traffic intensity: We explore different levels of satura-

tion in the network by varying the traffic intensity. For

this, we transmit, among all pairs of nodes, a random

value of traffic with a maximum value (ρmax). We explore

from very low saturated networks (ρmax = 0.1) up to

highly saturated networks (ρmax > 1)

• Routing: We explore three different routing configura-

tions, which are detailed in section VI-C.

Overall we have generated more than 400 different datasets

with different configurations in order to assess the accuracy of

the NN. Each dataset consists of 10,000 different simulations

(samples), and each sample contains the random traffic matrix,

which is used as the input features in the ML model, and the

delay matrix, which is used as the output features. Each dataset

is divided into three sets to train, validate and test each model.

All datasets used in this paper are publicly available 1.

C. Neural Networks

The generated dataset is used to train different neural

networks (NNs) models, using the traffic matrices as input

features and the delay matrices as output features. We explore

the following NN hyper-parameters: number of hidden layers,

number of neurons per layer, the activation function, the

learning rate and the regularization parameter. We choose the

hyper-parameters using the cross-validation technique and an

independent test set to evaluate the accuracy of the model.

In terms of implementation, we use the Tensorflow library

(version 1.2.1) to implement the NN models. After manual

tunning of the hyper-parameters and unless noted otherwise,

we use the following parameters:

• Activation function: Sigmoid

• Number of hidden layers: Equal to the number of input,

i.e., the square of the number of nodes in the network

• Maximum training epoch: 7,500,000

• Training Algorithm: Adam Optimizer

• Cost function: MSE with L2 regularization

• L2 regularization parameter: 0.00003

In the results, we compute the accuracy of the models as

“learning error” expressed as:

error =
1

S

1

N2

S∑

i=1

N
2∑

i=1

(d̂i − di)
2

where d̂i is the predicted delay, di is the test delay, S is the
size of the test-set and N2 is the total number of pair of nodes

in the network. To make a fair comparison, we subtract the

unavoidable variance caused by the averaging process of each

measure.

1https://github.com/knowledgedefinednetworking

0 0.5 1 1.5 2

Traffic [normalized by link capacity]

0

1

2

3

4

L
e
a
rn

in
g
 e

rr
o
r 

[M
S

E
]

10
-3

ANN - 1 hidden layer

ANN - 2 hidden layer

Fig. 5. Learning error as a function of the network saturation (A total of 40
NN).

VI. EXPERIMENTAL RESULTS

In this section, we present the results obtained in five

different experiments that cover different synthetic network

and traffic scenarios. Please note that unless stated otherwise,

we only show exemplifying figures since the other cases

provide similar results.

A. Traffic Characteristics and Intensity

First, we focus on the accuracy of the NN when estimating

the delay of different traffic intensities and packet-size distribu-

tions. Figure 5 shows the accuracy of two different NNs, with

one and two hidden layers, in a 10-node scale-free network

with different traffic intensity and for the binomial packet size

distribution.

Please note that the traffic intensity is expressed as (ρmax).

Each pair of node generates a random uniformly distributed

bandwidth with maximum (ρmax). As an example (ρmax = 2)

represents that, for each simulation, each node of the network,

for each destination, generates a random traffic following

the specified distribution at a random rate between 0 and

the double of the link capacity divided by the number of

destinations (i.e., uniformly distributed in the range of (0, 2C],
where C is the link capacity).

Figure 5 shows the learning error of two NN models with

one and two hidden layers respectively. Both models exhibit

a remarkably well performance, especially in low traffic sce-

narios. In high traffic scenarios, the function to learn becomes

more complicated, and the deeper model clearly outperforms

the smaller model. In the most saturated scenario, this error is

roughly equivalent to a relative error of 0.7 % for the deeper

network. When the network is not saturated, in which the MSE

is below 10−4, the relative error is practically negligible.

This experiment provides two interesting results. First, the

fact that simple NNs do not perform well suggests that the

delay function is complex and multi-dimensional, requiring

sophisticated regression techniques such as deep NNs. In

addition and more interestingly, deeper networks are required

for saturated networks. This is because saturated networks

result in more complex functions that require additional layers.



5

2 4 6 8 10 12 14 16

Nodes

1e-07

1e-05

1e-03

L
e

a
rn

in
g

 e
rr

o
r 

[M
S

E
]

Ring

Star

Scale-Free

Fig. 6. Learning error (log scale) as a function of the number of nodes for
three different topologies (A total of 39 NN).

B. Topologies and Network Size

In this section, we explore the accuracy of the NN when

estimating the delay with different network topologies and

sizes.

Figure 6 shows the accuracy of the NN model when

estimating the delay in a ring, star and scale-free topology with

different sizes, ranging from 3 to 15 nodes. In this scenario,

the traffic intensity is set to (ρmax = 0.6). As the figure shows,

the NN model can accurately predict the delay in the star and

the scale-free topology, but it presents a higher error in the

ring scenario.

The main reason for this is that for the same quantity of

traffic, the topology determines the saturation of the network.

In a ring topology, the traffic travels along the ring, which

easily saturates the network. As a result, the delay is in the

order of tens of seconds, and the shape of the function becomes

more complex. In the scale-free topologies, and especially in

the star topology, the intensity of traffic in the network is low

and easy to model.

We conclude that, for the considered scenarios, the topology

or the size has no impact on the accuracy of the NN estimates.

The only impact of such fundamental network characteristics

is that depending on the specific topology this may increase

the saturation, which results in more queuing requiring deeper

networks as we have seen in the previous experiment.

C. Routing

In the third experiment, we explore the effect of the routing

upon the learning capabilities. Table I shows the learning error

when using three different routing policies in a scale-free

network with 15 nodes and a traffic intensity of ρmax = 0.5.

For this, we consider the following routing policies: ’SP’

correspond to the shortest-path approach, ’MAN’ corresponds

to manual designed routing policy that may not follow the

shortest path approach but tries to load balance the use of

the links. Finally, the ’POOR’ configuration corresponds to a

deliberately poor performance configuration, in which a few

links are intentionally saturated.

In this case, we observe that, in the ’SP’ and ’MAN’

scenarios, the NN model performs well and as in the previous

cases, they provide a low learning error. The reason is that the

traffic intensity is low and easy to model. The ’POOR’ routing

TABLE I
LEARNING ERROR USING DIFFERENT ROUTINGS

SP MAN POOR

Learning error 1.10 · 10−6
1.12 · 10−6

3.33 · 10−5

5 6 7 8 9 10 11 12 13 14 15

Size of the network [number of nodes]

10-6

10-5

10-4

10-3

10-2

10-1

L
e
a
rn

in
g
 e

rr
o
r 

[M
S

E
]

10 neurons

25 neurons

50 neurons

100 neurons

150 neurons

225 neurons

Fig. 7. Learning error (log scale) for three different traffic intensities for a
different number of neurons in the hidden layers (A total of 18 NN).

policy performs worse since bottlenecks traffic through a few

links that produce queuing saturating the network.

In this set of experiments we have not seen any impact of

the routing policy in the accuracy of the NN. The only impact

is again related to the queuing, if the routing policy produces

saturation, then requires deeper models as we have shown in

section VI-A.

D. Number of neurons per hidden layer

In the fourth set of experiments, we compare the size of

the network, i.e., the nodes sending and receiving traffic with

the number of neurons needed in the hidden layers of the

NN models. Specifically, we explore three scale-free networks,

with 5, 10 and 15 nodes and six numbers of neurons: 10, 25,

50, 100, 150, 225.

Figure 7 shows the learning error as a function of the

number of nodes for a highly saturated network. We observe

that, as the number of nodes increases, more neurons are

needed to be able to model this behavior. This can be explained

by the fact that the traffic in larger networks is multiplexed

and demultiplexed several times, this increases the complexity

and the dimensionality of the model. However, the use of

more neurons in smaller networks is counter-productive since

the model over-fits the training set, which increases the test

error. To validate this claim, we have performed the same

experiment in a low-traffic environment, and we have seen

that in such environments fewer neurons are needed to train

the NN adequately.

E. Activation function

Finally and in the last set of experiments, we explore the

effect of using different activation functions in the hidden lay-

ers. Specifically, we compare the sigmoid, hyperbolic tangent

and rectified functions with the same set of hyper-parameters

defined in section V. In a low saturated network, the NN



6

TABLE II
LEARNING ERROR FOR THREE DIFFERENT TRAFFIC CONDITIONS IN A

REALISTIC ENVIRONMENT

Low Medium High

Learning error 1.60 · 10−5
4.51 · 10−5

2.87 · 10−4

can learn the behavior of the network with a negligible error

regardless of the activation function used. However in high

traffic scenarios, the NN needs to model the behavior of the

queues, and in such scenarios, we have obtained better results

with the sigmoid activation function.

VII. APPLYING THE GUIDELINES TO REALISTIC

ENVIRONMENTS

In order to apply the guidelines that we have learned with

the synthetic experiments in this section, we train an NN in

a realistic environment. Specifically, we use the GEANT2 24-

node topology 2. As for the traffic matrices we use a “hot

spot” model [16], where few pairs of nodes generate most of

the traffic carried by the network.

As for the NN in this set of experiments, we used two

hidden layers, 576 neurons per layer (the square of the number

of nodes), sigmoid activation function for the hidden layers,

the MSE with L2 regularization as the cost function and the

Adam optimizer algorithm.

Table II shows the learning error in this scenario as a

function of three different traffic intensities. We observe a

similar behavior than in the synthetic experiments VI-A, and

we obtain a good accuracy in all three cases with a relative

error lower than 1%.

VIII. DISCUSSION

In this section, we discuss our experimental results in

order to have a better understanding of the use of neural

networks (NNs) for computer network modeling. Given the

high computational cost of the experiments depicted in this

paper our results are limited to relatively small networks (up

to 24 nodes), however, we conclude several valuable lessons:

Neural networks can accurately model the average end-

to-end delay as a function of the input traffic matrix for

the considered scenarios: Well-designed NNS have produced

excellent results in all cases. The main reason behind this is

that, for the routing and forwarding mechanisms considered

in the experiments, networks are deterministic systems with

memory and can be learned with negligible error. As a result,

NNs should be considered as a relevant tool in the field of

network modeling.

High traffic intensity requires deeper and bigger

neural networks: Modeling networks with low traffic can

be modeled with simple tools. However, a valuable lesson is

that networks that operate close to saturation require more

sophisticated models, specifically more neurons and at least

more than one layer. This is because the average end-to-end

delay in a saturated network is a multi-dimensional non-linear

function which requires deeper NNs. The saturation is the

only parameter we have found that increases the complexity

2European optical transport network (www.geant.org)

of the delay model.

A. Advantages and Disadvantages

In this paper, we advocate that NNs are a useful tool

in computer network modeling. In the following list, we

discuss its main pros and cons with respect to more traditional

modeling techniques:

• Accurate in complex scenarios: Typically analytical

models are based on strong simplifying assumptions of

the underlying networking infrastructure: this is because

they need to be tractable. On the other hand, simulations

can model complex behavior, but this comes at a high

development and computational cost. ML techniques and

particularly NNs work very well with complexity (e.g.,

non-linear behaviors) and high-dimensionality scenarios.

• Fast and lightweight: NNs require important computa-

tional resources for training, but once trained they are fast

and lightweight. Indeed they can produce estimates of the

performance of the network in one single step and require

very little resources to run. In other words, the training

process implies iterating over all the dataset several times

while back-propagating the error, whereas each evaluation

of the model implies one forward-propagation step [17].

This represents a significant advantage particularly in

front of simulators that require important computational

resources to run and might be slow.

• Data-driven models: The main disadvantage of NNs is

that they are data-driven techniques and as such require

large training sets as well as computational resources

for the learning phase. Additionally and in the context

of computer networks collecting data from the network

typically means sampling a distribution (for instance

the average end-to-end delay needs to be sampled with

several packets). This statistical measurement process

is intrinsically associated with an irreducible error that

impacts the learning accuracy. It is worth noting that

in the experiments presented in this paper, we have

subtracted this error to only focus on the error associated

with the regressors.

IX. CONCLUSIONS

The main conclusion of this work is that the average end-

to-end delay in communication networks can be accurately

modeled using neural networks (NNs). We have found that

NNs perform remarkably well, and the only handicap we have

found is in highly saturated networks, which require deeper

and more advanced NNs. NNs offer a powerful tool, and with

a suitable tuning of the hyper-parameters, they can accurately

model the average end-to-end delay of computer networks.

X. ACKNOWLEDGMENTS

This work has been partially supported by the Spanish

Ministry of Economy and Competitiveness under contract

TEC2017-90034-C2-1-R (ALLIANCE project) that receives

funding from FEDER and by the Catalan Institution for

Research and Advanced Studies (ICREA).



7

REFERENCES

[1] Clark, D., et al. “A knowledge plane for the internet.” Conf. on Applica-
tions, technologies, architectures, and protocols for computer communi-
cations, ACM Proceedings of, 2003.

[2] Kreutz, D., et al. “Software-defined networking: A comprehensive sur-
vey.” Proceedings of the IEEE vol. 103.1, pp. 14-76, 2015.

[3] Clemm, A., et al. “DNA: An SDN framework for distributed network an-
alytics,” Integrated Network Management (IM), IFIP/IEEE International
Symposium on. IEEE, 2015.

[4] Mestres, A., Rodriguez-Natal, A., Carner, J., Barlet, P., Alarcón, E.,
Meyer, D., Barkai, S., Maino, F., Ermagan, V., Coras, F., Latapie, H.,
Cassar, C., Evans, J., Muntes, V., Walrand, J., Cabellos, A., “Knowledge-
Defined Networking.”, ACM Sigcomm Computer Communication Re-
view, vol. 47.3, pp. 2-10, 2017.

[5] Wang, Ning, et al. “An overview of routing optimization for internet traffic
engineering.” IEEE Communications Surveys & Tutorials 10.1, 2008.

[6] Simon, Gyula, et al. “Simulation-based optimization of communication
protocols for large-scale wireless sensor networks.” IEEE aerospace
conference, Vol. 3. 2003.

[7] Giambene, G., “Queuing Theory and Telecommunications: Networks and
Applications.” Springer Science& Business Media, 2005.

[8] Shortle, John F., et al. “Fundamentals of queueing theory.” John Wiley
& Sons, 2018.

[9] Steinbach, T, et al. “An extension of the OMNeT++ INET framework for
simulating real-time ethernet with high accuracy.” Proc. of the 4th Int.
ICST Conference on Simulation Tools and Techniques, 2011.

[10] Dainotti, A., et al. “Issues and future directions in traffic classification.”
IEEE network, vol. 26.1, 2012.

[11] Sommer, R., and Vern P.. “Outside the closed world: On using machine
learning for network intrusion detection.” Security and Privacy (SP), IEEE
Symposium on. IEEE, 2010.

[12] Yan, He, et al. “G-rca: a generic root cause analysis platform for service
quality management in large ip networks.” IEEE/ACM Transactions on
Networking, vol. 20.6, pp. 1734-1747, 2012.

[13] Lin, Shih-Chun, et al. “QoS-aware adaptive routing in multi-layer hier-
archical software defined networks: a reinforcement learning approach.”
Services Computing (SCC), IEEE International Conference on, 2016.

[14] Wang, Mowei, et al. “Machine Learning for Networking: Workflow,
Advances and Opportunities.” IEEE Network, 2017.

[15] Varga, A. “The OMNeT++ discrete event simulation system.” Proceed-
ings of the European simulation multiconference, Vol. 9, No. S 185, 2001.

[16] Medina, Alberto, et al. “Traffic matrix estimation: Existing techniques
and new directions.” ACM SIGCOMM Computer Communication Re-
view, vol. 32.4, pp.161-174, 2002.

[17] Anthony, Martin, and Peter L. Bartlett. “Neural network learning:
Theoretical foundations.” cambridge university press, 2009.


	I Introduction
	II A Use-Case of ML for Network Control and Operation
	III Problem Statement
	IV State of the art
	V Methodology
	V-A Overview
	V-B Network Simulations
	V-C Neural Networks

	VI Experimental Results
	VI-A Traffic Characteristics and Intensity
	VI-B Topologies and Network Size
	VI-C Routing
	VI-D Number of neurons per hidden layer
	VI-E Activation function

	VII Applying the guidelines to realistic environments
	VIII Discussion
	VIII-A Advantages and Disadvantages

	IX Conclusions
	X Acknowledgments
	References

