1807.08652v1 [cs.NI] 23 Jul 2018

arxXiv

Understanding the Modeling of Computer Network
Delays using Neural Networks

Albert Mestres, Eduard Alarcén, Yusheng Ji and Albert Cabellos-Aparicio

Abstract—Recent trends in networking are proposing the use of
Machine Learning (ML) techniques for the control and operation
of the network. In this context, ML can be used as a computer
network modeling technique to build models that estimate the
network performance. Indeed, network modeling is a central
technique to many networking functions, for instance in the
field of optimization, in which the model is used to search a
configuration that satisfies the target policy. In this paper, we
aim to provide an answer to the following question: Can neural
networks accurately model the delay of a computer network as a
Junction of the input traffic? For this, we assume the network as a
black-box that has as input a traffic matrix and as output delays.
Then we train different neural networks models and evaluate its
accuracy under different fundamental network characteristics:
topology, size, traffic intensity and routing. With this, we aim to
have a better understanding of computer network modeling with
neural nets and ultimately provide practical guidelines on how
such models need to be trained.

Index Terms—KDN, SDN, ML, Networking, Modeling

I. INTRODUCTION

The use of Machine Learning (ML) techniques in the
networking field is gaining momentum. One of the more
promising areas is to help and improve the control and
operation of computer networks. Although this idea is not
new (see D.Clark et al) [1] this trend is becoming more
popular thanks to two enabling technologies: Software-Defined
Networking (SDN) [2] and Network Analytics (NA) [3].

Indeed, the rise of SDN transforms the network from an
inherently distributed system to a (logically) centralized one
that can be fully controlled through the SDN controller. At the
same time, the NA field is developing techniques to monitor
and obtain precise metrics of the network behavior. When
combined, SDN and NA provide a central entity that offers
a rich view and full control over the network where to apply
ML.

In this context, learning techniques can be used to provide
automatic control of the network via the SDN controller
thanks to the network monitoring information obtained via
the NA platform. This new networking paradigm is known as
Knowledge-Defined Networking (KDN) [4].

Under the KDN paradigm, there are a wide variety of use-
cases for taking advantage of ML techniques in computer
networks. Among all such potential use-cases in this paper,

A. Mestres, and A. Cabellos-Aparicio are with the Computer Ar-
chitecture Department, Universitat Politecnica de Catalunya (e-mail:
{amestres/acabello} @ac.upc.edu)

E. Alarcén is with the Electrical Engineering Department, Universitat
Politecnica de Catalunya (e-mail: eduard.alarcon@upc.edu)

Yusheng Ji is with NII, Japan (e-mail: kei@nii.ac.jp)

we focus on a single one: modeling of network delays using
neural networks(NNs). The main reason for this is that network
modeling is central to many network operations, particularly
in the field of network optimization. Typically network op-
timization algorithms require a network model over which
the optimization techniques operate to find the best element
(e.g., 3], [6]).

In this paper we aim to answer the following question:
Can neural networks (NNs) accurately model the delay of a
computer network as a function of the input traffic? For this,
we assume the network as a black-box that has as input traffic
and as output delays. This question is fundamental to network
modeling. Indeed both analytical (e.g., queuing models) and
computational models (e.g., simulators) are well-known tech-
niques used to estimate the performance of a network based on
its input traffic. In this paper we posit that NNs can represent a
third pillar in the area of network modeling, providing relevant
advantages towards traditional techniques. Indeed with NN,
we can build a ‘digital twin’ of the real infrastructure, this
twin can then be used for optimization, validation, prediction,
etc. To the best of our knowledge, this is the first attempt to
model a computer network using NNs.

Following this approach, in this paper, we first design a set
of synthetic experiments and use different hyper-parameters
and computer networks to understand how accurate are NNs
when modeling computer networks. With this, we learn a set
of practical guidelines that help us understand how NNs model
computer networks. Finally, we validate our guidelines by
effective modeling with a NN a realistic network loaded with
realistic traffic matrices.

This article is organized as follows. Section [[I] presents a
use-case in which modeling the delay of a computer network
allows to optimize its performance. In Section we model
the specific problem we address in this paper. The related state
of the art is presented in Section[[V] In Section[V] we introduce
the methodology we followed to obtain the different datasets
from simulated networks and to train different NN models.
The different experimental results for different networks and
NN models are presented in Section In Section |[VIIL we
apply the methodology described in this paper to model a
larger and more realistic network. Finally, in Section
and Section we analyze the different experiments results
obtained and conclude this work.

II. A USE-CASE OF ML FOR NETWORK CONTROL AND
OPERATION

Network modeling is a well-established field that provides
techniques which are central to a wide range of communica-

SDN Network Knowledge Plane
Target policylFl ’
Optimal u
configuration Optimizer
E\/\\\ / Configuration Performance
eé £ \//'
B
s =
Traffic
change

Fig. 1. Graphical representation of the optimization use-case.

tion functions. Typically, techniques such as simulation and
analytical tools are used to build computer network models.

In our use-case, the network model is built using neural
networks (NNs), specifically trained from collected or network
simulated data. This model can be understood as a ‘digital
twin’ of the real networking infrastructure. As such it captures
the fundamental relationship between network parameters, for
instance, it can model the function that relates traffic load,
routing policy with the resulting performance.

As an example and in the context of network optimization,
the ‘digital twin’ can be used to estimate the performance of
any possible incoming traffic and configuration (see Fig. [1]
for a schematic representation). Then traditional optimization
algorithms (such as hill-climbing) can be used in combination
with the ‘digital twin’ to find the optimal configuration that
results in the desired performance. Beyond optimization, the
‘digital twin’ can also be used for validation, prediction,
recommendation, etc.

In the context of this general use-case, this paper aims to
have a better understanding on how NNs can learn from net-
work data, how accurate they are, which are the fundamental
challenges and ultimately to provide practical guidelines.

III. PROBLEM STATEMENT

In this section, we describe the problem statement that we
aim to address in this paper. Figure [2| summarizes the problem
statement using three layers. Note that in this paper, as a first
step to understand how can NNs model the behavior of the
network, we consider the configuration as constant and we
build the delay model only as a function of the traffic.

The bottom layer represents the real-world physical network
infrastructure that has certain fundamental characteristics, such
as topology, size, routing, etc. The middle layer represents
the system abstraction in which the network is assumed as
a black-box, traffic ingresses the box and egresses it with a
certain average delay. The traffic is described by stochastic
distributions, both the inter-arrival process and the packet
length process. These stochastic processes are combined in
the network, which is a deterministic complex system with
certain properties (topology, routing, etc) and memory when
random processes such as physical errors are not taken into
account.

Finally, the top layer represents the NN that models the
computer network performance. The NN produces estimates of
the average end-to-end delay for all pairs of nodes considering

ML model and learning technique
Machine Learning
Architecture

System / Deterministic
Abstraction é System
& /N with Memory

- Inter-arrival processes
- Packet-length processes ~ Network N?‘WU"!(Routing . pelay processes
(Stochastic processes) topology properties policy (Stochastic processes,

o

Nodes are traffic generators,
consumers and routers

Communication
Network

Fig. 2. Graphical representation of the problem statement addressed in this
paper.

the input traffic as a traffic matrix [ingress, egress]. The
network characteristics (routing, topology, etc) are hidden
from the NN, and hence it is trained only for one particular
configuration of the network infrastructure that is, a certain
topology, routing, etc.

Specifically, the function we aim to model can be expressed

as:
D = f(T)

in which D and T are N x N matrices, the first one
representing the average delay between the 7 (row) node and

the j (column) node, and the second one representing the
amount of traffic between 7 and j in an N nodes network. The
delay from ¢ to j is determined by the quantity of traffic sent
between these nodes and the quantity of traffic sent between
other nodes that share part of the path.

FigureE] shows the delay function we aim to learn (fit) with
a NN in a very simple network topology (see inside the figure).
In this example, only two nodes generate traffic which is sent
to a third node. Specifically, the figure represents the average
delay from 1 to R as a function of this traffic when the node
2 is heavily massively traffic.

In real networks, this function becomes much more com-
plex, since it depends on the state of the queues of the nodes
of the path followed by each pair of nodes, which depends
on the traffic sent among a big number of pair of nodes. In
other words, Figure [3] exemplifies the function we aim to fit
with NNs for a simple one dimension problem; however, in
real networks, this is a high dimensionality function.

Specifically, the main questions that we aim to address in
this paper are:

e Can we train a NN to produce accurate estimates of the
mean end-to-end delay for all pairs of nodes considering
the input traffic matrix (ingress, egress)?

o Which is the impact of fundamental network characteris-
tics (topology, routing, size, traffic intensity) concerning
the accuracy of the NN?

o Can we derive some guidelines to build the NN models?
For example, what is the architecture of the NN model

®

N
o

~

o
o

Delay [time units]
o
o o

(&}

»
o

IS

35 . . .
0 0.5 1 15 2
Traffic [normalized by the capacity]

Fig. 3. Simple example of the function to learn

that best estimates of the delay?

IV. STATE OF THE ART

The main goal of this paper is to understand if a NN can be
used for network modeling and to provide practical guidelines
for NN modeling in this scenario.

In the field of network modeling, there are two fundamental
approaches: analytical and computational models (simulation)
techniques. As for analytical techniques, Markov chain the-
ory has been widely used in queuing theory to model the
behavior of a single queue by assuming certain stochastic
proprieties of the job arrival and job completion processes (ex.
M/M/1, M/D/1...). These models have been extended to model
networks of nodes, i.e., queuing networks [7]. Examples of
these theories are: Jackson Networks, Gordon-Newell theorem,
Mean value analysis, Buzen’s algorithm, Kelly network, G-
network, BCMP network [8]. Computational models are also
another popular technique to model the behavior of networks.
Typically simulators (such as [9]) operate either at packet or
flow level and simplify the network protocols they simulate.

Machine Learning mechanisms have been used in the field
of communications, and such techniques have been used
extensively in the area of traffic analysis [10], network se-
curity [[11] and root-cause analysis [12]]. Additionally, some
works propose the use of Reinforcement Learning techniques
for routing optimization [13]. In a recent paper [14], the
authors describe different use-cases for ML applied to network
and among then, discuss NN as a modeling technique for
computer networks.

Similarly to [14], in this paper, we advocate that NNs
represent a third pillar in the field of network modeling. NNs
can efficiently complement existing analytical and computa-
tional techniques providing important advantages. To the best
of our knowledge, this is the first attempt to experimentally
evaluate the use of NNs to model the performance of computer
networks.

V. METHODOLOGY

In this section, we detail the methodology used to under-
stand if a NN can estimate the average delay of a computer
network as a function of the traffic matrix.

Results

Simulations Supervised

Learning

10,000 samples of:
- Traffic Matrix ';\y‘\g .
2

- Resulting delay Matrix A';; %
S * ANN
U * Polynomial R.

Evaluate the accuracy
Which is the relation
between accuracy and

the fundamental
network properties?

Space exploration:

- Topology

- Network Size

é\ﬁ - Traffic Characteristics
- Saturation

Fig. 4. Scheme of the methodology followed in this work

A. Overview

Figure @] shows an overview of the methodology. To ex-
perimentally analyze the accuracy of the NN, we generate
different datasets by means of simulations, in each dataset we
change different network characteristics: traffic distribution,
traffic intensity, topology, size and routing policy and measure
the average delay.

Once we have generated the dataset we use them to train
a set of NN models, then we evaluate its accuracy using the
cross-validation technique. We split the dataset into three sets,
the training set with 60% of the samples, the validation set
with 20% of the samples and the test set with the remaining
20% of the samples. The training set is used to optimize
the ML model, the validation set is used to evaluate the
model during the training phase, and the test set is used to
provide an independent evaluation of the performance. With
this, we compare the average delay estimated by the NN model
with the one measured from the simulator. To make a fair
comparison, we subtract the unavoidable variance caused by
the averaging process from each result.

Ultimately, we want to understand both the accuracy of the
NN and its relation to fundamental characteristics of networks:
traffic distribution, traffic intensity, topology, size and routing
policy.

B. Network Simulations

In order to generate the dataset, we use the Omnet++
simulator (version 4.6) [15]], in each simulation we measure
the average end-to-end delay during 16k units of time for
all pairs of nodes. The transmission speed of all links in the
network is set to 10 kilobits per unit of time, and the average
size of the packets is 1 kilobits. We explore different network
and traffic parameters to evaluate how these parameters affect
the modeling capabilities when learning the network delay
under different networks operating under different regimes of
saturation and packet length.

Specifically, for the dataset we consider the following
parameters:

« Topology: We explore three different network topologies:
unidirectional ring, star, and scale-free networks. These
three topologies present different connectivities which
may affect the learning capabilities.

o Network size: We study networks from 3 to 15 nodes
where all nodes are active transmitters and receivers.

« Traffic Distributions: We evaluate four different packet
length distributions: deterministic (constant), uniform,
binomial and Poisson using a fixed average packet length.
In all the cases the inter-arrival time is exponential.

« Traffic intensity: We explore different levels of satura-
tion in the network by varying the traffic intensity. For
this, we transmit, among all pairs of nodes, a random
value of traffic with a maximum value (p,,,4,). We explore
from very low saturated networks (pmqe: = 0.1) up to
highly saturated networks (pnq > 1)

o Routing: We explore three different routing configura-
tions, which are detailed in section

Overall we have generated more than 400 different datasets

with different configurations in order to assess the accuracy of
the NN. Each dataset consists of 10,000 different simulations
(samples), and each sample contains the random traffic matrix,
which is used as the input features in the ML model, and the
delay matrix, which is used as the output features. Each dataset
is divided into three sets to train, validate and test each model.
All datasets used in this paper are publicly available

C. Neural Networks

The generated dataset is used to train different neural
networks (NNs) models, using the traffic matrices as input
features and the delay matrices as output features. We explore
the following NN hyper-parameters: number of hidden layers,
number of neurons per layer, the activation function, the
learning rate and the regularization parameter. We choose the
hyper-parameters using the cross-validation technique and an
independent test set to evaluate the accuracy of the model.

In terms of implementation, we use the Tensorflow library
(version 1.2.1) to implement the NN models. After manual
tunning of the hyper-parameters and unless noted otherwise,
we use the following parameters:

o Activation function: Sigmoid

o Number of hidden layers: Equal to the number of input,

i.e., the square of the number of nodes in the network

« Maximum training epoch: 7,500,000

e Training Algorithm: Adam Optimizer

o Cost function: MSE with L2 regularization

o L2 regularization parameter: 0.00003

In the results, we compute the accuracy of the models as
“learning error” expressed as:

where cfi is the predicted delay, d; is the test delay, S is the
size of the test-set and N2 is the total number of pair of nodes

in the network. To make a fair comparison, we subtract the
unavoidable variance caused by the averaging process of each
measure.

Ihttps://github.com/knowledgedefinednetworking

47><10'3

—©6— ANN - 1 hidden layer
—&A— ANN - 2 hidden layer

Learning error [MSE]
n w

0 0.5 1 15 2
Traffic [normalized by link capacity]

Fig. 5.
NN).

Learning error as a function of the network saturation (A total of 40

VI. EXPERIMENTAL RESULTS

In this section, we present the results obtained in five
different experiments that cover different synthetic network
and traffic scenarios. Please note that unless stated otherwise,
we only show exemplifying figures since the other cases
provide similar results.

A. Traffic Characteristics and Intensity

First, we focus on the accuracy of the NN when estimating
the delay of different traffic intensities and packet-size distribu-
tions. Figure [5] shows the accuracy of two different NNs, with
one and two hidden layers, in a 10-node scale-free network
with different traffic intensity and for the binomial packet size
distribution.

Please note that the traffic intensity is expressed as (Pqq)-
Each pair of node generates a random uniformly distributed
bandwidth with maximum (p,,4.). As an example (e = 2)
represents that, for each simulation, each node of the network,
for each destination, generates a random traffic following
the specified distribution at a random rate between 0 and
the double of the link capacity divided by the number of
destinations (i.e., uniformly distributed in the range of (0, 2C],
where C' is the link capacity).

Figure [5] shows the learning error of two NN models with
one and two hidden layers respectively. Both models exhibit
a remarkably well performance, especially in low traffic sce-
narios. In high traffic scenarios, the function to learn becomes
more complicated, and the deeper model clearly outperforms
the smaller model. In the most saturated scenario, this error is
roughly equivalent to a relative error of 0.7 % for the deeper
network. When the network is not saturated, in which the MSE
is below 10~*, the relative error is practically negligible.

This experiment provides two interesting results. First, the
fact that simple NNs do not perform well suggests that the
delay function is complex and multi-dimensional, requiring
sophisticated regression techniques such as deep NNs. In
addition and more interestingly, deeper networks are required
for saturated networks. This is because saturated networks
result in more complex functions that require additional layers.

—#— Ring
1e-03 | |—»—Star
Scale-Free

1e-05¢

Learning error [MSE]

16-07 - / S~ */K**_*’*\\/

Nodes

Fig. 6. Learning error (log scale) as a function of the number of nodes for
three different topologies (A total of 39 NN).

B. Topologies and Network Size

In this section, we explore the accuracy of the NN when
estimating the delay with different network topologies and
sizes.

Figure [shows the accuracy of the NN model when
estimating the delay in a ring, star and scale-free topology with
different sizes, ranging from 3 to 15 nodes. In this scenario,
the traffic intensity is set to (P4 = 0.6). As the figure shows,
the NN model can accurately predict the delay in the star and
the scale-free topology, but it presents a higher error in the
ring scenario.

The main reason for this is that for the same quantity of
traffic, the topology determines the saturation of the network.
In a ring topology, the traffic travels along the ring, which
easily saturates the network. As a result, the delay is in the
order of tens of seconds, and the shape of the function becomes
more complex. In the scale-free topologies, and especially in
the star topology, the intensity of traffic in the network is low
and easy to model.

We conclude that, for the considered scenarios, the topology
or the size has no impact on the accuracy of the NN estimates.
The only impact of such fundamental network characteristics
is that depending on the specific topology this may increase
the saturation, which results in more queuing requiring deeper
networks as we have seen in the previous experiment.

C. Routing

In the third experiment, we explore the effect of the routing
upon the learning capabilities. Table |I| shows the learning error
when using three different routing policies in a scale-free
network with 15 nodes and a traffic intensity of p,,q, = 0.5.
For this, we consider the following routing policies: ’SP’
correspond to the shortest-path approach, "MAN’ corresponds
to manual designed routing policy that may not follow the
shortest path approach but tries to load balance the use of
the links. Finally, the "POOR’ configuration corresponds to a
deliberately poor performance configuration, in which a few
links are intentionally saturated.

In this case, we observe that, in the 'SP’ and 'MAN’
scenarios, the NN model performs well and as in the previous
cases, they provide a low learning error. The reason is that the
traffic intensity is low and easy to model. The ’POOR’ routing

TABLE I
LEARNING ERROR USING DIFFERENT ROUTINGS

SP MAN POOR
1.10-1076 | 1.12-1076 | 3.33-10"°

Learning error

107" w

=—©— 10 neurons

=== 25 neurons
50 neurons 7))

= 100 neurons

~—6— 150 neurons

102

225 neurons

Learning error [MSE]

5 6 7 8 9 10 11 12 13 14 15
Size of the network [number of nodes]

Fig. 7. Learning error (log scale) for three different traffic intensities for a
different number of neurons in the hidden layers (A total of 18 NN).

policy performs worse since bottlenecks traffic through a few
links that produce queuing saturating the network.

In this set of experiments we have not seen any impact of
the routing policy in the accuracy of the NN. The only impact
is again related to the queuing, if the routing policy produces
saturation, then requires deeper models as we have shown in

section [VI-A

D. Number of neurons per hidden layer

In the fourth set of experiments, we compare the size of
the network, i.e., the nodes sending and receiving traffic with
the number of neurons needed in the hidden layers of the
NN models. Specifically, we explore three scale-free networks,
with 5, 10 and 15 nodes and six numbers of neurons: 10, 25,
50, 100, 150, 225.

Figure [/| shows the learning error as a function of the
number of nodes for a highly saturated network. We observe
that, as the number of nodes increases, more neurons are
needed to be able to model this behavior. This can be explained
by the fact that the traffic in larger networks is multiplexed
and demultiplexed several times, this increases the complexity
and the dimensionality of the model. However, the use of
more neurons in smaller networks is counter-productive since
the model over-fits the training set, which increases the test
error. To validate this claim, we have performed the same
experiment in a low-traffic environment, and we have seen
that in such environments fewer neurons are needed to train
the NN adequately.

E. Activation function

Finally and in the last set of experiments, we explore the
effect of using different activation functions in the hidden lay-
ers. Specifically, we compare the sigmoid, hyperbolic tangent
and rectified functions with the same set of hyper-parameters
defined in section [V] In a low saturated network, the NN

TABLE II
LEARNING ERROR FOR THREE DIFFERENT TRAFFIC CONDITIONS IN A
REALISTIC ENVIRONMENT

Medium
4.51-107°

Low
1.60 - 105

High
2.87-10~4

Learning error

can learn the behavior of the network with a negligible error
regardless of the activation function used. However in high
traffic scenarios, the NN needs to model the behavior of the
queues, and in such scenarios, we have obtained better results
with the sigmoid activation function.

VII. APPLYING THE GUIDELINES TO REALISTIC
ENVIRONMENTS

In order to apply the guidelines that we have learned with
the synthetic experiments in this section, we train an NN in
a realistic environment. Specifically, we use the GEANT?2 24-
node topology El As for the traffic matrices we use a “hot
spot” model [16], where few pairs of nodes generate most of
the traffic carried by the network.

As for the NN in this set of experiments, we used two
hidden layers, 576 neurons per layer (the square of the number
of nodes), sigmoid activation function for the hidden layers,
the MSE with L2 regularization as the cost function and the
Adam optimizer algorithm.

Table [II] shows the learning error in this scenario as a
function of three different traffic intensities. We observe a
similar behavior than in the synthetic experiments and
we obtain a good accuracy in all three cases with a relative
error lower than 1%.

VIII. DISCUSSION

In this section, we discuss our experimental results in
order to have a better understanding of the use of neural
networks (NNs) for computer network modeling. Given the
high computational cost of the experiments depicted in this
paper our results are limited to relatively small networks (up
to 24 nodes), however, we conclude several valuable lessons:

Neural networks can accurately model the average end-
to-end delay as a function of the input traffic matrix for
the considered scenarios: Well-designed NNS have produced
excellent results in all cases. The main reason behind this is
that, for the routing and forwarding mechanisms considered
in the experiments, networks are deterministic systems with
memory and can be learned with negligible error. As a result,
NNs should be considered as a relevant tool in the field of
network modeling.

High traffic intensity requires deeper and bigger
neural networks: Modeling networks with low traffic can
be modeled with simple tools. However, a valuable lesson is
that networks that operate close to saturation require more
sophisticated models, specifically more neurons and at least
more than one layer. This is because the average end-to-end
delay in a saturated network is a multi-dimensional non-linear
function which requires deeper NNs. The saturation is the
only parameter we have found that increases the complexity

2European optical transport network (www.geant.org)

of the delay model.

A. Advantages and Disadvantages

In this paper, we advocate that NNs are a useful tool
in computer network modeling. In the following list, we
discuss its main pros and cons with respect to more traditional
modeling techniques:

o Accurate in complex scenarios: Typically analytical
models are based on strong simplifying assumptions of
the underlying networking infrastructure: this is because
they need to be tractable. On the other hand, simulations
can model complex behavior, but this comes at a high
development and computational cost. ML techniques and
particularly NNs work very well with complexity (e.g.,
non-linear behaviors) and high-dimensionality scenarios.

« Fast and lightweight: NNs require important computa-
tional resources for training, but once trained they are fast
and lightweight. Indeed they can produce estimates of the
performance of the network in one single step and require
very little resources to run. In other words, the training
process implies iterating over all the dataset several times
while back-propagating the error, whereas each evaluation
of the model implies one forward-propagation step [17].
This represents a significant advantage particularly in
front of simulators that require important computational
resources to run and might be slow.

« Data-driven models: The main disadvantage of NNs is
that they are data-driven techniques and as such require
large training sets as well as computational resources
for the learning phase. Additionally and in the context
of computer networks collecting data from the network
typically means sampling a distribution (for instance
the average end-to-end delay needs to be sampled with
several packets). This statistical measurement process
is intrinsically associated with an irreducible error that
impacts the learning accuracy. It is worth noting that
in the experiments presented in this paper, we have
subtracted this error to only focus on the error associated
with the regressors.

IX. CONCLUSIONS

The main conclusion of this work is that the average end-
to-end delay in communication networks can be accurately
modeled using neural networks (NNs). We have found that
NNs perform remarkably well, and the only handicap we have
found is in highly saturated networks, which require deeper
and more advanced NNs. NNs offer a powerful tool, and with
a suitable tuning of the hyper-parameters, they can accurately
model the average end-to-end delay of computer networks.

X. ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Economy and Competitiveness under contract
TEC2017-90034-C2-1-R (ALLIANCE project) that receives
funding from FEDER and by the Catalan Institution for
Research and Advanced Studies (ICREA).

(1]

(2]
(3]

(4]

(51
(6]

(71
(8]

REFERENCES

Clark, D., et al. “A knowledge plane for the internet.” Conf. on Applica-
tions, technologies, architectures, and protocols for computer communi-
cations, ACM Proceedings of, 2003.

Kreutz, D., et al. “Software-defined networking: A comprehensive sur-
vey.” Proceedings of the IEEE vol. 103.1, pp. 14-76, 2015.

Clemm, A, et al. “DNA: An SDN framework for distributed network an-
alytics,” Integrated Network Management (IM), IFIP/IEEE International
Symposium on. IEEE, 2015.

Mestres, A., Rodriguez-Natal, A., Carner, J., Barlet, P., Alarcén, E.,
Meyer, D., Barkai, S., Maino, F., Ermagan, V., Coras, F., Latapie, H.,
Cassar, C., Evans, J., Muntes, V., Walrand, J., Cabellos, A., “Knowledge-
Defined Networking.”, ACM Sigcomm Computer Communication Re-
view, vol. 47.3, pp. 2-10, 2017.

Wang, Ning, et al. “An overview of routing optimization for internet traffic
engineering.” IEEE Communications Surveys & Tutorials 10.1, 2008.
Simon, Gyula, et al. “Simulation-based optimization of communication
protocols for large-scale wireless sensor networks.” IEEE aerospace
conference, Vol. 3. 2003.

Giambene, G., “Queuing Theory and Telecommunications: Networks and
Applications.” Springer Science& Business Media, 2005.

Shortle, John F, et al. “Fundamentals of queueing theory.” John Wiley
& Sons, 2018.

[9] Steinbach, T, et al. “An extension of the OMNeT++ INET framework for
simulating real-time ethernet with high accuracy.” Proc. of the 4th Int.
ICST Conference on Simulation Tools and Techniques, 2011.

[10] Dainotti, A., et al. “Issues and future directions in traffic classification.”
IEEE network, vol. 26.1, 2012.

[11] Sommer, R., and Vern P.. “Outside the closed world: On using machine
learning for network intrusion detection.” Security and Privacy (SP), IEEE
Symposium on. IEEE, 2010.

[12] Yan, He, et al. “G-rca: a generic root cause analysis platform for service
quality management in large ip networks.” IEEE/ACM Transactions on
Networking, vol. 20.6, pp. 1734-1747, 2012.

[13] Lin, Shih-Chun, et al. “QoS-aware adaptive routing in multi-layer hier-
archical software defined networks: a reinforcement learning approach.”
Services Computing (SCC), IEEE International Conference on, 2016.

[14] Wang, Mowei, et al. “Machine Learning for Networking: Workflow,
Advances and Opportunities.” IEEE Network, 2017.

[15] Varga, A. “The OMNeT++ discrete event simulation system.” Proceed-
ings of the European simulation multiconference, Vol. 9, No. S 185, 2001.

[16] Medina, Alberto, et al. “Traffic matrix estimation: Existing techniques
and new directions.” ACM SIGCOMM Computer Communication Re-
view, vol. 32.4, pp.161-174, 2002.

[17] Anthony, Martin, and Peter L. Bartlett. “Neural network learning:
Theoretical foundations.” cambridge university press, 2009.

	I Introduction
	II A Use-Case of ML for Network Control and Operation
	III Problem Statement
	IV State of the art
	V Methodology
	V-A Overview
	V-B Network Simulations
	V-C Neural Networks

	VI Experimental Results
	VI-A Traffic Characteristics and Intensity
	VI-B Topologies and Network Size
	VI-C Routing
	VI-D Number of neurons per hidden layer
	VI-E Activation function

	VII Applying the guidelines to realistic environments
	VIII Discussion
	VIII-A Advantages and Disadvantages

	IX Conclusions
	X Acknowledgments
	References

