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Abstract—Neural network model compression techniques can
address the computation issue of deep neural networks on
embedded devices in industrial systems. The guaranteed output
error computation problem for neural network compression with
quantization is addressed in this paper. A merged neural network
is built from a feedforward neural network and its quantized
version to produce the exact output difference between two neural
networks. Then, optimization-based methods and reachability
analysis methods are applied to the merged neural network to
compute the guaranteed quantization error. Finally, a numerical
example is proposed to validate the applicability and effectiveness
of the proposed approach.

Index Terms—model compression, neural networks, quantiza-
tion

I. INTRODUCTION

Neural networks have been demonstrated to be powerful

and effective tools to solve complex problems such as image

processing [1], high-performance adaptive control [2], etc.

Due to the increasing complexity of the problems in various

applications, the scale and complexity of neural networks

also grow exponentially to meet the desired accuracy and

performance. Recent progress of machine learning, such as

training and using a new generation of large neural networks,

heavily depends on the availability of exceptionally large com-

putational resources, e.g., the Transformer model with neural

architecture search proposed in [3], if trained from scratch

for each case, requires 274,120 hours training on 8 NVIDIA

P100 GPUs [4]. Additionally, even for already trained neural

networks, the verification process is also quite time- and

resource-consuming, e.g., some simple properties in the ACAS

Xu neural network of a 5-layer simple structure proposed in [5]

need more than 100 hours to be verified. To avoid unaffordable

computation when using neural networks, a variety of neural

network acceleration and compression methods are proposed

such as neural network pruning and quantization, which can

significantly reduce the size and memory footprint of neural

networks as well as expedite the speed of model inference.

Quantization as a reduction method is mainly concerned

with the amount of memory utilized for the learnable pa-

rameters of a neural network. The data type for the weights
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and biases of a typical neural network is usually expressed

as 32-bit floating-point values that will carry out millions of

floating-point operations during inference time. Quantization

aims to shrink the memory footprint of deep neural networks

by reducing the number of bits used to store the values for

the learnable parameters and activations. This is not only

ideal for application scenarios where memory resources may

be restricted such as embedded systems or microcontroller

environments, but with the selected weight representation

you could potentially facilitate faster inference using cheaper

arithmetic operations [6]. With the reduction in parameter bit

precision, however, it is typical that a quantized neural network

will perform worse in terms of accuracy than its non-quantized

counterpart using gradient-based learning methods. However,

these drops in accuracy are usually considered minimal and

worth the given benefit in memory reduction and inference

speed-up. There exists much literature describing various tech-

niques of quantization and successful results thereof, including

works utilizing stochastic rounding to select weight values

beneficial to gradient training [7] and applications on modern

deep architectures [8], as well as quantization methods that

reduce the number of multiplication operations required during

training time [9]. Significant research has also been done on

quantization-aware training methods [10], where the loss in

accuracy due to bit precision reduction is minimized. Some of

these quantization-aware training methods utilize a straight-

through gradient estimator (STE) [11] to more appropriately

select weights during network training that minimizes accuracy

and further reduces computational burden [12].

As quantization methods are used for neural network reduc-

tion, there inevitably exist discrepancies between the perfor-

mances of original and compressed neural networks. In this

work, we propose a computationally tractable approach to

compute the guaranteed output error caused by quantization.

A merged neural network is constructed to generate the output

differences between two neural networks, and then reachability

analysis on the merged neural network can be performed to

obtain the guaranteed error. The remainder of the paper is

organized as follows: Preliminaries are given in Section II. The

main results on quantization error computation are presented

in Section III. A numerical example is given in Section IV.

The conclusion is presented in Section V.
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II. PRELIMINARIES

In this work, we consider a class of fully-connected feedfor-

ward neural networks which can be described by the following

recursive equations










u0 = u

uℓ = φℓ(Wℓuℓ−1 + bℓ), ℓ = 1, . . . , L

y = uL

(1)

where u0 = u ∈ R
nu is the input vector of the neural network,

y = uL ∈ R
ny is the output vector of the neural network,

Wℓ ∈ R
nℓ×nℓ−1 and bℓ ∈ R

nℓ are weight matrices and bias

vectors for the ℓ-th layer, respectively. φℓ = [ψℓ, · · · , ψℓ] is the

concatenation of activation functions of the ℓ-th layer in which

ψℓ : R → R is the activation function, e.g., such as logistic,

tanh, ReLU, sigmoid functions. In addition, the input-output

mapping of the above neural network Φ : R
nu → R

ny is

denoted in the form of

y = Φ(u) (2)

where u ∈ R
nu and y ∈ R

ny are the input and output of the

neural network, respectively.

A common quantization procedure Q(·) to map a floating

point value r to an integer can be formulated as what follows

Q(r) = int(r/S)− Z (3)

where S is a floating point value as a scaling factor, and Z
is an integer value that represents 0 in the quantization policy

which could be 0 or other values. The int : R → Z is the

function rounding the floating point value of an integer.

To reduce the size and complexity of the neural network, the

quantization procedure is implemented on the neural network

parameters, i.e., weights and biases. The quantized version of

the neural network (1) is in the form of










u0 = u

uℓ = φℓ(Q(Wℓ)uℓ−1 + Q(bℓ)), ℓ = 1, . . . , L

y = uL

(4)

where Q(Wℓ) ∈ Z
nℓ×nℓ−1 and Q(bℓ) ∈ Z

nℓ are the quantized

weight matrices and bias vectors for the ℓ-th layer under the

quantization process Q(·). Furthermore, the quantized version

of neural network Φ : R
nu → R

ny is expressed as ΦQ :
Z
nu → Z

ny in the form of

y = ΦQ(u). (5)

The quantization can significantly reduce the size and

computational complexity of a neural network, e.g., mapping

the 32-bit floating point representation to an 8-bit integer

representation, leading to smaller models that can fit in

hardware with high computational efficiency. However, the

price to pay is the loss of performance and precision post-

quantization. To formally characterize the performance loss

caused by quantization, a reasonable expectation is to compute

the quantization error between the neural network and its

quantized version.

Definition 1: Given a tuple M , 〈Φ,Q,U〉 where Φ is a

neural network defined by (1), Q is the quantization process

of (3) producing quantized neural network ΦQ, and U ∈ R
nu

is a compact input set, the guaranteed quantization error is

defined by

ρ(M) = sup
u∈U

‖Φ(u)− ΦQ(u)‖ (6)

where ΦQ is the quantized neural network of Φ.

Remark 1: The assumption that the input set U is a compact

set is reasonable since neural networks are rarely applied to

raw data sets. Instead, standardization and rescaling techniques

such as normalization are used which ensure the inputs are

always within a compact set such as [0, 1] or [−1, 1]. Given

the compact input set U which contains all possible input to

the neural network, the guaranteed quantization error ρ(M)
characterizes the upper bound for the difference between the

outputs of neural network Φ and its quantized version ΦQ

generated from the same inputs in set U , which quantifies the

discrepancy caused by the quantization process Q in terms of

outputs.

III. QUANTIZATION ERROR COMPUTATION

To address the quantization error computation problem, the

key is to estimate a γ > 0 such that ρ(M) ≤ γ. Due to

the complexity of the neural network, it is challenging to

estimate the γ directly from the discrepancy of Φ(u)−ΦQ(u).
Other than directly analyzing the discrepancy of two neural

networks, we proposed to construct a new fully-connected

neural network Φ̃ merged from Φ and ΦQ which is expected to

produce the discrepancy of the outputs of two neural networks,

i.e., Φ̃(u) = Φ(u) − ΦQ(u), and then search for the upper

bound of the outputs of the merged neural network.

Given L-layer neural network Φ and quantized ΦQ, the

merged neural network Φ̃ : Rnu → R
ny is constructed with

L+ 1 layers as follows:










ũ0 = u

ũℓ = φ̃ℓ(W̃ℓũℓ−1 + b̃ℓ), ℓ = 1, . . . , L+ 1

ỹ = ũL+1

(7)

where

W̃ℓ =



































[

W1

Q(W1)

]

, ℓ = 1

[

Wℓ 0nℓ×nℓ−1

0nℓ−1×nℓ
Q(Wℓ)

]

, 1 < ℓ ≤ L

[

Iny
−Iny

]

, ℓ = L+ 1

(8)

b̃ℓ =















[

bℓ

Q(bℓ)

]

, 1 ≤ ℓ ≤ L

[

02ny×1

]

, ℓ = L+ 1

(9)

φ̃ℓ(·) =

{

φℓ(·), 1 ≤ ℓ ≤ L

L(·), ℓ = L+ 1
(10)

where L(·) is linear transfer function, i.e., x = L(x).



Theorem 1: Given a tuple M , 〈Φ,Q,U〉 where Φ is a

neural network defined by (1), Q is the quantization process

of (3), and U ∈ R
nu is a compact input set, the guaranteed

quantization error ρ(M) can be computed by

ρ(M) = sup
u∈U

∥

∥

∥
Φ̃(u)

∥

∥

∥
(11)

where Φ̃ is a fully-connected neural network defined in (7).

Proof . First, let us consider ℓ = 1. Given an input ũ0 =
u ∈ R

nu , one can obtain that

ũ1 = φ̃1(W̃1ũ0 + b̃1) =

[

φ1(W1ũ0 + b1)
φ1(Q(W1)ũ0 + Q(b1))

]

. (12)

Then, we consider 1 < ℓ ≤ L. Starting from ℓ = 2, we

have

W̃2ũ1 =

[

W2 0n2×n1

0n2×n1
Q(W2)

] [

φ1(W1ũ0 + b1)
φ1(Q(W1)ũ0 + Q(b1))

]

=

[

W2φ1(W1ũ0 + b1)
Q(W2)φ1(Q(W1)ũ0 + Q(b1))

]

. Furthermore, it leads to

ũ2 = φ̃2(W̃2ũ1 + b̃2)

=

[

φ2(W2φ1(W1ũ0 + b1) + b2)
φ2(Q(W2)φ1(Q(W1)ũ0 + Q(b1)) + b2)

]

.

Iterating the above process from ℓ = 2 to ℓ = L, the

following recursive equation can be derived

ũℓ = φ̃ℓ(W̃ℓũℓ−1 + b̃ℓ) =

[

φℓ(Wℓũℓ−1 + bℓ)
φℓ(Q(Wℓ)ũℓ−1 + Q(bℓ))

]

where ℓ = 2, . . . , L. Together with (12) when ℓ = 1, it yields

that

ũL =

[

Φ(u)
ΦQ(u)

]

. (13)

Furthermore, when considering the last layer ℓ = L+1, the

following result can be obtained

ũL+1 = L

(

[

Iny
−Iny

]

[

Φ(u)
ΦQ(u)

])

= Φ(u)− ΦQ(u)

(14)

where means Φ̃(u) = Φ(u)− ΦQ(u).
Based on the definition of guaranteed quantization error

ρ(M), i.e., Definition 1, we can conclude that

ρ(M) = sup
u∈U

‖Φ(u)− ΦQ(u)‖ = sup
u∈U

∥

∥

∥
Φ̃(u)

∥

∥

∥
. (15)

The proof is complete. �

Remark 2: Theorem 1 implies that we can analyze the

merged neural network Φ̃ to compute the quantization error

between neural network Φ and its quantized version ΦQ. This

result facilitates the computation process by employing those

analyzing tools, such as optimization and reachability analysis

tools, for merged neural network Φ̃.

• Using the interval arithmetic for neural network, we can

employ Moore-Skelboe Algorithm [13] to search upper

bound of ||Φ̃(u)|| subject to u ∈ U where U is a compact

set. The key to implement Moore-Skelboe Algorithm is

to construct the interval extension of [Φ̃] : IRnu → IR
ny .

First, from Theorem 1 in [14] under the assumption

that activation functions are monotonically increasing, the

interval extension of merged neural network [Φ̃] can be

constructed as

[Φ̃] = [Φ̃−, Φ̃+] (16)

where Φ̃− and Φ̃+ are left (limit inferior) and right (limit

superior) bounds of interval [Φ̃] that are defined as follows

Φ̃− :



















ũ−

0 = u−

ũ−

ℓ = φ̃ℓ

(

[

W̃−

ℓ W̃+

ℓ

]

[

ũ+

ℓ−1

ũ−

ℓ−1

]

+ b̃ℓ

)

ỹ− = ũ−

L+1

Φ̃+ :



















ũ+

0 = u+

u+

ℓ = φ̃ℓ

(

[

W̃−

ℓ W̃+

ℓ

]

[

ũ−

ℓ−1

ũ+

ℓ−1

]

+ b̃ℓ

)

ỹ+ = ũ+

L+1

in which U ⊆ [u] = [u−,u+], and

W−

ℓ = [wi,j
ℓ ], wi,j

ℓ =

{

wi,j
ℓ wi,j

ℓ < 0

0 wi,j
ℓ ≥ 0

(17)

W+

ℓ = [wi,j
ℓ ], wi,j

ℓ =

{

wi,j
ℓ wi,j

ℓ ≥ 0

0 wi,j
ℓ < 0

(18)

with wi,j
ℓ , wi,j

ℓ , and wi,j
ℓ being the elements in i-th

row and j-th column of matrix Wℓ, W−

ℓ , and W+

ℓ .

With the above tractable calculation of Φ̃− and Φ̃+,

we can perform Moore-Skelboe Algorithm to compute

guaranteed quantization error ρ(M).
• Under the framework of reachability analysis of neural

networks, the guaranteed quantization error computation

problem can be turned into a reachable set computation

problem for merged neural network Φ̃. Given the input

set U , the following set

Y =
{

ỹ ∈ R
ny | ỹ = Φ̃(u), u ∈ U

}

(19)

is called the output set of neural network (1). The

guaranteed quantization error ρ(M) can be obtained by

ρ(M) = max{y | ỹ ∈ Y}. (20)

The key step is the computation for the reachable set

Y . This can be efficiently done through neural network

reachability analysis. There exist a number of verification

tools for neural networks available for the reachable set

computation. The neural network reachability analysis

tool can produce the reachable set Y in the form of a

union of polyhedral sets such as NNV [15], veritex [16],

etc. The IGNNV tool computes the reachable set Y as a

union of interval sets [14], [17]. With the reachable set

Y , the guaranteed quantization error ρ(M) can be easily

obtained by searching for the maximal value of ‖ỹ‖ in



TABLE I
NEURAL NETWORK MODEL MEMORY SIZES

Neural Networks Size (KB)

Original Neural Network (1× 50× 50× 50× 1) 35.0

Quantized Neural Network (1× 50× 50× 50× 1) 19.6

Fig. 1. The lower- and upper bounds of outputs of quantized neural networks
based on a guaranteed quantization error.

Y , e.g., testing throughout a finite number of vertices in

the interval or polyhedral sets.

IV. NUMERICAL EXAMPLE

To verify the effectiveness of the quantization error com-

putation, a numerical example is used. First, a large neural

network, Φ, is generated such that it has a 1-D input layer,

three hidden layers with 50 neurons in each layer, and a 1-D

output layer. Each layer has an activation function of ReLU

except for the output layer with a linear function. The weights

and biases were randomly initialized, but with the condition

that they were normally distributed with a mean of zero and

a standard deviation of one.

After generating Φ, a quantization method was applied to

reduce the size of the weights and biases, and to introduce a

slight reduction in accuracy. This quantized network is called

ΦQ. While there exist several quantization methods and tools

to quantize networks, a basic technique that truncates the

weights and biases to 4 decimal places is used in this numerical

example.

Next, a merged network Φ̃ was constructed from Φ and ΦQ

according to (7). The veritex neural network reachability tool

[16] computed the reachable output set of Φ̃ given the input

interval normalized as [0, 1]. Finally, the quantization error

was obtained using (20) which is ρ(M) = 0.5008. Using this

error, the lower and upper bound can be constructed using the

following formula: Φ(u) ± ρ(M) as shown in Fig. 1. Please

note that this quantization error is very small compared with

the range of outputs. Thus, to provide more detail, the figure

has been zoomed into an appropriate scale. Moreover, the

memory sizes of models are shown in Table I.

V. CONCLUSIONS

This paper addressed the guaranteed output error compu-

tation problem for neural network compression with quanti-

zation. Based on the original neural network and its com-

pressed version resulted from quantization, a merged neural

network computation framework is developed, which can

utilize optimization-based methods and reachability analysis

methods to compute the guaranteed quantization error. At last,

numerical examples are proposed to validate the applicability

and effectiveness of the proposed approach. Future work will

be expanded to include more complex and various neural

network architectures such as convolutional neural networks.
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