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Neural networks have achieved impressive breakthroughs in both industry and academia. How
to effectively develop neural networks on quantum computing devices is a challenging open prob-
lem. Here, we propose a new quantum neural network model for quantum neural computing using
(classically-controlled) single-qubit operations and measurements on real-world quantum systems
with naturally occurring environment-induced decoherence, which greatly reduces the difficulties of
physical implementations. Our model circumvents the problem that the state-space size grows expo-
nentially with the number of neurons, thereby greatly reducing memory requirements and allowing
for fast optimization with traditional optimization algorithms. We benchmark our model for hand-
written digit recognition and other nonlinear classification tasks. The results show that our model
has an amazing nonlinear classification ability and robustness to noise. Furthermore, our model
allows quantum computing to be applied in a wider context and inspires the earlier development of
a quantum neural computer than standard quantum computers.

Introduction

Developing new computing paradigms [1–4] has at-
tracted considerable attention in recent years due to the
increasing cost of computing and the von Neumann bot-
tleneck [5]. Conventional (hard) computing is character-
ized by precision, certainty, and rigor. In contrast, “soft
computing” [1, 2] is a newer approach to computing that
mimics human thinking to learn and reason in an envi-
ronment of imprecision, uncertainty, and partial truth.
This approach aims to address real-world complexities
with tractability, robustness, and low solution costs. In
particular, neural networks (NNs), a subfield of soft com-
puting, have rapidly evolved in both theory and practice
during the current machine learning boom [6, 7]. With
backpropagation algorithms, NNs have achieved impres-
sive breakthroughs in both industry and academia [8, 9]
and may even alter the way computation is performed [4].
However, the training cost of NNs can become very ex-
pensive as the network size increases [10]. More seriously,
it is difficult for NNs to simulate quantum many-body
systems with exponentially large quantum state spaces
[11], which restricts basic scientific research and the in-
telligent development of biopharmaceutical and material
design.
Quantum computing [3] is another paradigm shift in

computing, and it promises to solve the aforementioned
difficulties of NNs. How to effectively develop NNs on
quantum computing devices is a challenging open prob-
lem [11–13] that is still in its initial stages of exploration.
In recent years, many novel and original works have at-
tempted to develop well-performing quantum NN mod-
els [14–25] on noisy intermediate-scale quantum devices
[26], and these networks can be used to learn tasks in-
volving quantum data or to improve classical models.
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However, despite the remarkable progress in the physical
implementation of quantum computing in recent years,
a number of significant challenges remain for building
a large-scale quantum computer [27–29]. Thus, if the
quest for quantum NNs heavily relies on standard quan-
tum computing devices, the scope of applying quantum
NNs might be quite restrictive.

A real-world quantum system is always characterized
by nonunitary, faulty evolutions and is coupled with a
noisy and dissipative environment. The real-system com-
plexities in the quantum domain call for a new paradigm
of quantum computing aiming at nonclassical compu-
tation using real-world quantum systems. Thus, the
new quantum computing paradigm, called soft quantum
computing to be compared with classical soft comput-
ing, deals with classically intractable computation under
the conditions of noisy and faulty quantum evolutions
and measurements, while being tolerant of those effects
that are detrimental for the standard quantum comput-
ing paradigm.

Here, we propose for the first time a quantum NN
model to illustrate soft quantum computing. Unlike
other quantum NN models, we develop NNs for quan-
tum neural computing based on “soft quantum neurons”,
which are building blocks of soft quantum computing
and subject to only single-qubit operations, classically-
controlled single-qubit operations and measurements,
thus significantly reducing the difficulties of physical im-
plementations. We demonstrate that quantum corre-
lations characterized by non-zero quantum discord are
present for quantum neurons in our model. The sim-
ulation results show that our quantum perceptron can
be used to classify nonlinear problems and simulate the
XOR gate. In contrast, classical perceptrons do not pos-
sess such nonlinear classification capabilities. Further-
more, our model is able to classify handwritten digits
with an extraordinary generalization ability even with-
out hidden layers. Our model also has a significant accu-
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racy advantage over other quantum NNs for the above-
mentioned tasks. Prominently, the proposed soft quan-
tum neurons can be integrated into quantum analogues of
typical topological architectures [30–33] in classical NNs.
The respective advantages of quantum technology and
classical network architectures can thus be well combined
in our quantum NN model.

Results

Soft quantum neurons.

Quantizing the smallest building block of classical
NNs, namely, the neuron, is a key challenge in build-
ing quantum NNs. Our soft quantum neuron model is
inspired by biological neurons (Fig. 1), which can be im-
plemented on realistic quantum systems. The term “soft”
utilized here highlights the ability of our model to han-
dle realistic environments and evolutions, distinguishing
it from the standard quantum computing models. It is
worth noting that soft computing is a proprietary term
that is conceptually opposite to hard computing. In our
proposal, a quantum neuron is modelled by a noisy qubit,
which can be coupled with its surrounding environment.
The initial state of the jth neuron can be described by a
density matrix ρinj in the computational basis |0〉 and

|1〉. The quantum neuron ρinj accepts nj outputs si
(i = 1, 2, ..., nj) from the final states ρouti (i = 1, 2, ..., nj)
of the other possible nj neurons. The output si is deter-
mined by a 2−outcome projective measurement on ρouti

in the computational basis. It is therefore a classical
binary signal, namely, si = 0 or 1. When si = 1, corre-
sponding to the case where ρouti is measured and collapses
to the state |1〉, the quantum neuron ρinj is acted upon
by an arbitrary superoperator Wij , while when si = 0
(ρouti collapses to the state |0〉), nothing happens to ρinj .
Ideally, Wij can be replaced by a corresponding unitary
operator Wij . As a result, the evolution of the whole
system from the state

⊗nj

i=1 ρ
out
i ⊗ ρinj is

ρmid
{i}j = T

⊗nj

i=1
Oij(ρ

out
i ⊗ ρinj )

≡ T
⊗nj

i=1
[P|0〉

i
⊗ Îj + P|1〉

i
⊗Wij ](ρ

out
i ⊗ ρinj ).

(1)

Here, Oij is a classically-controlled single-qubit opera-
tion, the superprojectors P|s〉 are defined by P|s〉ρ =

|s〉 〈s| ρ |s〉 〈s|, Î is the identity operator, and T repre-
sents a time-ordering operation. All Wij act upon the
target neuron ρinj with specific temporal patterns. As
different quantum operations Wij might be noncommu-
tative, the time-ordering of these operations is impor-
tant. The state of the target neuron after the evolution
of Eq. (1) can be obtained by tracing out all the input

neurons ρouti , namely, ρmid
j = tr{i}ρ

mid
{i}j = T

∏nj

i=1[piÎj +

(1− pi)Wij ]ρ
in
j , where pi ≡ pi(0) = tr(|0〉i 〈0| ρ

out
i ).

After the evolution of Eq. (1), the target neuron ρmid
j is

independently acted upon by a local bias superoperator
Uj . This operator is designed to improve the flexibility
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FIG. 1. A drastically simplified drawing of a neuron

and the soft quantum neuron model. a The neuron in-
tegrates hundreds or thousands of impinging signals through
its dendrites. After processing by the cell body, the neuron
outputs a signal through its axon to another neuron for pro-
cessing in the form of an action potential when its internal
potential exceeds a certain threshold. b Similarly, a “soft
quantum neuron” can in principle receive hundreds or thou-
sands of input signals. These signals affect the evolution of
the soft quantum neuron. The evolved soft quantum neuron
is measured and decides whether to output a signal according
to the measurement result.

and learning ability of quantum neurons. Ideally, Uj can
be replaced by a corresponding unitary operator Uj . The
action of Uj is similar to adding bias to neurons in classi-
cal NNs [6, 7]. The final state of the target neuron is thus
ρoutj = Uj(ρ

mid
j ). Similarly, the output sj of the target

neuron is obtained by a 2−outcome projective measure-
ment on ρoutj in the computational basis. The output
signal sj of the target neuron is

sj =

{

0 with probability pj(0)
1 with probability 1− pj(0).

(2)

The output sj can be accepted by all other connecting
quantum neurons and affects the evolution of the quan-
tum neurons that accept the output. This completes
the specification of our proposed quantum neuron
model. Strikingly, our model contains noisy cases,
which allow our model to work under the conditions
of noisy and faulty quantum evolutions and measure-
ments. An elementary setup of our model is the soft
quantum perceptron, which consists of a soft quantum
neuron accepting inputs of n other soft quantum neu-
rons and providing a single output, though in probability.

Quantumness of quantum neurons.

All final states of our quantum neurons are mixed
states, as the evolution of these neurons depends on the
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FIG. 2. Simplified demonstration of the principle of

deferred measurement as applied to our model. a

A simple example of our model. The quantum neuron ρout1

sends signals to ρin2 and ρin3 . b The quantum circuit model
of (a). c The deferred measurement quantum circuit of (a),
which is equivalent to (b). Here, C12 and C13 are controlled

unitary operators acting on ρin2 and ρin3 , respectively.

measurements of their input neurons, thus introducing
classical probability. Although such measurements make
the neurons evolve into mixed states, the proposed quan-
tum neurons can still develop quantum correlations aris-
ing from quantum discord. To make this clear, we con-
sider the simplest two-neuron case. For the two neurons
in the states ρout1 = p1 |0〉1 〈0|+(1−p1) |1〉1 〈1| (p1 6= 0, 1)
and ρin2 , the action of an operationO12 results in the state

ρmid
12 = (P|0〉1

⊗ Î2 + P|1〉1
⊗W12)(ρ

out
1 ⊗ ρin2 )

= p1 |0〉1 〈0| ⊗ ρin2 + (1− p1) |1〉1 〈1| ⊗W12(ρ
in
2 ),
(3)

where W12 represents a specific quantum channel. Quan-
tum correlations, if any, of ρmid

12 can be quantified by
the quantum discord [34]. Any bipartite state is called
fully classically correlated if it is of the form [35] ρc12 =
∑

i,j pij |i〉1 〈i| ⊗ |j〉2 〈j|; otherwise, it is quantum corre-

lated. Here, |i〉1 and |j〉2 are the orthonourmal bases of
the two parties, with nonnegative probabilities pij .
Obviously, for ρmid

12 in Eq. (3) the first neuron be-
comes quantum-correlated with the second as long as
W12(ρ

in
2 ) and ρin2 are nonorthogonal [36–38]. In partic-

ular, Refs. [37, 38] show the creation of discord, from
classically correlated two-qubit states, by applying an
amplitude-damping process only on one of the qubits;
for the phase-damping process, see Ref. [35]. Actually,
ρmid
12 in Eq. (3) is the classical-quantum state, as dubbed

in Ref. [37]. While for measurements on neuron-1 the dis-
cord is zero, measurements on neuron-2 in general lead
to nonzero discord.
Thus, we reveal a crucial property of our quantum neu-

ron model. Namely, quantum correlations arising from
quantum discord can be developed between the proposed
quantum neurons in our model, although these neurons
are generally in mixed states. Note that the existing
quantum neural network models are mainly based on
variational quantum circuits requiring two-qubit gates.

More remarkably, our model can be equated to
quantum circuits generating quantum entanglement. To
illustrate this more clearly, we take three neurons in
Fig. 2a as an example and represent their interactions
by a quantum circuit model shown in Fig. 2b. To
facilitate the demonstration, we consider the ideal case
where ρin2 and ρin3 are pure states and Wij and Uj are
replaced by corresponding unitary operators Wij and
Uj , respectively. According to the principle of deferred
measurement [3], measurements can always be moved
from the middle step of a quantum circuit to the end of
the circuit. Therefore, the circuit in Fig. 2c is equivalent
to that in Fig. 2b. In the equivalent circuit, the unitaries
that are conditional on the measurement results are
replaced by controlled unitary operations on ρin2 and
ρin3 . It is easy to verify that quantum entanglement
can exist between neuron-1 and neuron-2 (as well as
neuron-3) in Fig. 2c. Another example of the principle of
deferred measurement can be found in teleportation [3].
Nonetheless, it remains unclear whether this equivalence
can be effectively utilized in computing tasks. We leave
this matter for future work.

Soft quantum neural network.

Quantum neurons are connected together in various
configurations to form quantum NNs with learning abil-
ities, thus representing a quantum neural computing de-
vice obeying the evolution-measurement rules provided
above. Our neurons can in principle be combined into
quantum analogues of any classical network architecture
that has proven effective in many applications. In this
work, we present a fully-connected soft quantum feedfor-
ward NN (SQFNN) for application to supervised learn-
ing.
Neurons are arranged in layers in a fully-connected

feedforward NN (FNN). Each neuron accepts all the sig-
nals sent by the neurons in the previous layer and outputs
the integrated signal to each neuron in the next layer.
Note that there is no signal transmission between neu-
rons within the same layer. To date, there has been no
satisfactory quantum version of this simple model. Be-
cause no neuron can perfectly copy its quantum state in
multiple duplicates as an output to the next layer due
to the quantum no-cloning theorem [39], the output is
not perfectly shared by neurons in the next layer. Be-
cause of the same theorem, quantum neural computing
and standard quantum computing have incompatible re-
quirements that are difficult to reconcile [12]. Our quan-
tum NNmodel resolves this incompatibility by measuring
each soft quantum neuron to give classical information
as the integrated signal. This feature is essential for our
model to be a genuine quantum NN model, which, while
incorporating a neural computing mechanism, uses quan-
tum laws consistently throughout neural computing.
In fact, many studies have made bold attempts in this

challenging area. For example, Ref. [14] introduces a gen-
eral “fan-out” unit that distributes information about the
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input state into several output qubits. The quantum neu-
ron in Ref. [15] is modelled as an arbitrary unitary oper-
ator with m input qubits and n output qubits. These at-
tempts provide new perspectives for resolving the above-
mentioned incompatibility. Unfortunately, none of them
directly confronts this incompatibility. The neurons in
these schemes still cannot share the outputs of the neu-
rons in the previous layer; conversely, each neuron can
only send different signals to different neurons in the next
layer. In that sense, our NN is quite different from these
quantum NNs.
Figure 3 shows the concept of an SQFNN. Without loss

of generality, we specify that signals propagate from top
to bottom and from left to right. Therefore, the evolution
equation of the jth neuron in the lth layer is

ρout
j(l)

≡ Uj(l)tr{i(l−1)}

(
⊗n(l−1)

i(l−1)=1
Oi(l−1)j(l)(ρ

out
i(l−1) ⊗ ρin

j(l)
)), (4)

where Oi(l−1)j(l) acts on the ith neuron in the (l − 1)th
layer and the jth neuron in the lth layer. The final state
of the output layer of the network can be obtained by
calculating the final state of each neuron layer by layer
with Eq. (4) after considering the local bias superopera-
tor acting upon each neuron. Note that due to the ran-
domness introduced by the measurement operations, the
result of a single run of the quantum NN is unstable,
i.e., probabilistic. One way to prevent this instability
is to obtain the average output of the network by re-
setting and rerunning the entire network multiple times.
This average output is more representative of the predic-
tion made by our quantum NN and is therefore defined
as the final output of the network. For each neuron of
the output layer, the average output includes the binary
outputs in the computation basis and their correspond-
ing probabilities. Although running the network multiple
times seems to consume more time and resources, this
increase is only equivalent to an additional constant fac-
tor on the original consumption [15] and has no serious
consequences. Therefore, running the network multiple
times is common for extracting the information of quan-
tum NNs and is also widely adopted by other quantum
NN models [15, 20]. Strikingly, this repetitive operation
is easy and fast for a quantum computer. For example,
the “Sycamore” quantum computer executed an instance
of a quantum circuit a million times in 200 seconds [40].
In supervised learning, the NN must output a value

close to the label of the training point. The closeness
between the output and the label is usually measured by
defining a loss function. The loss function in our model
can be defined in various ways, e.g., by the fidelity be-
tween the output and the expected output or by cer-
tain distance measure. In the simulations shown below,
a mean squared error (MSE) loss function is adopted,
which can be written as

L =
N
∑

k=1

1

N

∣

∣yk − ỹk
∣

∣

2
, (5)

Input

Output

SQFNN

FNN

FIG. 3. The concept of SQFNNs. The network architec-
ture of a soft quantum feedforward NN (SQFNN) is similar to
that of the fully-connected feedforward NN (FNN) displayed
at the bottom right corner. There is no feedback in the entire
network. Signals propagate unidirectionally from the input
layer to the output layer. The first action occurs between the
red neuron and the blue neuron. The part in the white box
represents the output layer, whose average output is defined
as the final output of the network.

where N represents the size of a training set, yk repre-
sents the label of the k-th training point, and ỹk rep-
resents the predicted label of our network for the k-th
training point, which is the average value of the output
layer of the network obtained by resetting and rerunning
the entire network multiple times. This loss function can
be driven to a very low value by updating the parame-
ters of the network, thereby improving the network per-
formance. However, the loss function is nonconvex and
thus requires iterative, gradient-based optimizers. As in-
formation is forwards-propagated in our network, we can
use a backpropagation algorithm to update the param-
eters of the quantum operations. Moreover, since only
single-qubit gates are involved in our model, the total
number of parameters is not large and is approximately
∑L−1

l=1 3 (nl + 1) × nl+1, where L is the total number of
layers in a network and nl is the number of neurons in
the lth layer. This number is directly proportional to the
length L of the network and the square of the average
width of the network (i.e., the average number of neu-
rons per layer). In particular, the state space involved in
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computing the gradients is always that of a single neuron,
thus circumventing the problem that the state-space size
grows exponentially with the number of neurons. Many
optimization algorithms widely used in classical NNs are
therefore effectively compatible with our quantum NN,
such as Adagrad [41], RMSprop [42], and Adam [43].

Both classical and quantum samples are available for
our network, which is similar to other quantum NNs. For
classical data, the input features need to be encoded into
qubits and fed to the input layer. For quantum data, the
quantum states can be decomposed into a tensor product
of the qubits in the input layer, as in quantum circuits.

Simulations

In this section, we benchmark soft quantum percep-
trons and SQFNNs with simple XOR gate learning,
classifying nonlinear datasets and handwritten digit
recognition. Our models show extraordinary generaliza-
tion abilities and robustness to noise in the numerical
simulations.

XOR gate learning. The XOR gate is a logic gate that
cannot be simulated by classical perceptrons because the
input–output relationship of the gate is nonlinear. Fig-
ure 4 reports the results of XOR gate learning with a soft
quantum perceptron. Figures 4a,b show the structure
and setting of the soft quantum perceptron (see Meth-
ods for details). The results clearly show that the soft
quantum perceptron is able to learn the data structure
of the XOR gate with very high accuracy (Fig. 4c). Fig-
ure 4d shows the training process, where the training
accuracy of our model converges quickly after even one
epoch. These results show that our soft quantum percep-
tron has an extraordinary nonlinear classification ability.
In addition, we add the bit flip channel, the phase

flip channel and the bit-phase flip channel to this task
to further demonstrate the performance of our model
on realistic quantum systems. We assume that each
quantum neuron passes through the same type of
quantum noise channel with probability p while waiting
to be operated. To make the results more reliable, we
repeat the prediction 100 times with the trained model
and use the average accuracy as the evaluation metric.
We set the highest noise level in the simulations to
p = 0.5. Measurements in the simulations are calculated
within the limit of the infinite shot number. Details
of the simulation results can be found in Table I in
Methods. The result shows that our model is robust to
these different quantum channels. A remarkable result is
that our model is fully tolerant to the phase flip channel
for the XOR gate learning task. In particular, our model
achieves up to 75% accuracy even with a probability
of a bit flip or bit-phase flip up to 0.40. When the
probability of a bit flip or bit-phase flip reaches 0.50,
the noise makes qubits |0〉 and |1〉 completely indistin-
guishable. Our model also naturally does not work in
this case, which is consistent with theoretical predictions.

Classifying nonlinear datasets. Two standard two-
dimensional datasets (“circles” and “moons”) are stud-
ied to further demonstrate the ability of soft quantum
perceptrons to classify nonlinear datasets and form de-
cision boundaries (see Methods for details). For each
dataset, 200 (100) points are generated as the training
(test) set. Figure 5a visualizes the training set for the
two datasets, where the red (blue) dots represent class 1
(class 2). Obviously, the two datasets are linearly insep-
arable. Figure 5b reports the results of classifying the
“circles” datasets with different models. Displayed from
left to right are the simulation results for the classical
multilayer perceptron (MLP), the parameterized quan-
tum circuit (PQC) model and our model. The settings
of these models are discussed in detail in the Methods.
Figure 5c shows that all three models achieved 100% clas-
sification accuracy on the test set of “circles”. However,
the soft quantum perceptron converges faster and learns
more robust decision bounds. It is worth reemphasizing
that soft quantum perceptrons do not have hidden layers
and do not require two-qubit gates.

We also test the tolerance of soft quantum perceptrons
for different noise types on this task (see Table II in Meth-
ods). The noise types are added in a manner consistent
with the XOR gate learning task described above. The
results show that the soft quantum perceptron maintains
100% accuracy on the test set of “circles”, even when the
probability of a bit flip or bit-phase flip is as high as 0.40.
In particular, a soft quantum perceptron can achieve up
to 96% accuracy when the probability of a bit flip is as
high as 0.49. In addition, the soft quantum perceptron
can maintain over 90% accuracy when the probability of
a phase flip is as high as 0.5. We also found that the
robustness of our model can be greatly enhanced when
we use SQFNNs. For example, we obtain 100% accuracy
when the probability of a phase flip is as high as 0.50 by
adopting a 2-4-2-1 network structure. This suggests that
the capabilities of our model can be enhanced by building
more complex network structures, which provides strong
confidence in handling more complex classification prob-
lems with our model.

Figures 5d-e show the results of classifying the
“moons” datasets with different models. The MLP
achieved 100% accuracy, which is slightly higher than
the 99% accuracy of the soft quantum perceptron.
However, the soft quantum perceptron learns a decision
boundary that is better suited to the original data.
For comparison, the PQC model can only achieve 92%
accuracy. In the experimental setup currently used, our
model shows absolute advantages over the PQC model
in some tasks.

Handwritten digit recognition. Finally, we use
QuantumFlow, the classical MLP, the PQC model, soft
multioutput perceptron (SMP) and the SQFNN to rec-
ognize handwritten digits to demonstrate the ability of
our models to solve specific practical problems (see Meth-
ods for details). QuantumFlow is a codesign framework
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FIG. 4. Results of XOR gate learning with a soft quantum perceptron. a The structure of a soft quantum perceptron
for learning the XOR gate. The input layer receives two features of the XOR gate, namely, input 1 and input 2 of XOR. The
output layer predicts the results. b The quantum circuit model corresponding to (a). RY (xk

1π) and RY (xk

2π) are used to
encode the input features (see Methods for details). W s1

13
, W s2

23
and U3 are single-qubit gates with parameters, where the values

of the parameters converge during the learning process. c The simulation results of learning the XOR gate. The yellow (black)
area represents an output of 1 (0), which is consistent with the truth table of the XOR gate. The true table of the XOR gate
is displayed at the four corners of the figure. The soft quantum perceptron fully learns the data structure of the XOR gate. d
The training process of the XOR gate. Loss (accuracy) is the value of the loss function (the test accuracy). The soft quantum
perceptron achieves 100% test accuracy after the first epoch.

of NNs and quantum circuits, and it can be used to de-
sign shallow networks that can be implemented on quan-
tum computers [18]. SMP can also be regarded as an
SQFNN without hidden layers. The simulation setting
is discussed in the Methods section. Figure 6 shows the
results of different classifiers for classifying different sub-
datasets from MNIST [44]. The results show that the
classical MLP performs better than the other four quan-
tum models on all these subdatasets except for {3, 9}.
This may be caused by the fact that the classical opti-
mization algorithm has better adaptability to the clas-
sical MLP model. Strikingly, the performance of our
models (i.e., SMP and the SQFNN) is significantly bet-
ter than that of QuantumFlow as the number of classes
in the dataset increases, implying that our models may
have more advantages in dealing with more complex clas-
sification problems. For the datasets with two or three
classes, our models also perform significantly better than
the PQC model and perform comparably to Quantum-
Flow. For example, the SQFNN achieves 89.67% accu-
racy on the {3, 8} dataset, which is 2.47% and 4.34%
higher than those of QuantumFlow and the PQC model,
respectively. However, our models require only classically

controlled single-qubit operations and single-qubit oper-
ations, whereas QuantumFlow requires a large number of
controlled two-qubit gates or even Toffoli gates to imple-
ment the task. In particular, SMP is able to effectively
classify handwritten digits with a structure without hid-
den layers, which is not possible in classical multioutput
perceptrons.

Discussion

In this work, we develop a new routine for quantum
NNs as a platform for quantum neural computing on
real-world quantum systems. The proposed soft quan-
tum neurons are subject merely to local or classically
controlled single-qubit gates and single-qubit measure-
ments. The simulation results show that soft quantum
perceptrons have the ability, beyond that of classical per-
ceptrons, of nonlinear classification. Furthermore, our
model is able to classify handwritten digits with extraor-
dinary generalization ability, even in the absence of hid-
den layers. This performance, combined with the quan-
tum correlations arising from quantum discord in our
model, makes it possible to perform nonclassical com-
putations on realistic quantum devices that are exten-
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FIG. 5. Nonlinear decision boundaries by the classical MLP, the PQC model and our model. a Displayed from left
to right are the visualizations of the “circles” dataset and the “moons” dataset. X1 (X2) represents the horizontal (vertical)
coordinate of the input point. The red (blue) dots represent class 1 (class 2). Both datasets are linearly inseparable. b

Displayed from left to right are the simulation results for the classical multilayer perceptron (MLP), the PQC model and our
model. The classification accuracy is displayed at the bottom right corner of each subfigure. c The training process of learning
the “circles” dataset with different models. The same results of the “moons” dataset are shown in d and e.
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FIG. 6. Handwriting recognition with the classical

MLP, the PQC model, QuantumFlow and our models.

The brown, orange, yellow, purple and blue bars represent the
soft multioutput perceptron (SMP), SQFNN, QuantumFlow,
the classical MLP and PQC models, respectively. SMP can
also be regarded as an SQFNN without hidden layers and ac-
curately identifies handwritten digits that are impossible for
classical multioutput perceptrons.

sible to a large scale. Thus, the proposed computing
paradigm is not only physically easy to implement, but
also predictably exciting beyond classical computing ca-

pabilities.

The soft quantum neurons are modelled as indepen-
dent signal processing units and have more flexibility in
the network architecture. Similar to classical perceptrons
[6, 7], such units can receive signals from any number of
neurons and send their outputs to any number of neurons.
This similar property allows our quantum NNs to take
classical network architectures that have been proven ef-
fective, thereby exploiting the respective advantages of
quantum technology and classical network architectures.
For example, soft quantum neurons can be combined into
quantum convolutional NNs based on convolutional NNs
that are widely used in large-scale pattern recognition
[30]. Moreover, our model enables the construction of
quantum-classical hybrid NNs by introducing classical
layers. As the final output of our quantum NN is the
classical information, part of the classical information
can also be processed by classical perceptrons. This ad-
vantage makes our model more flexible and thus more
adaptable to various problems.

Our results provide an easier and more realistic route
to quantum artificial intelligence. However, some limi-
tations are worth noting. Although the quantum state
space involved in computing the gradients in our model
is always that of a single neuron, there may also be a bar-
ren plateau in the loss function landscape, which hinders
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the further optimization of the network. Additionally,
while soft quantum NNs are much easier to build than
standard ones, we need to do more work to understand
what kinds of tasks they do well in learning. Future
work should therefore include further research on opti-
mization algorithms and building various soft quantum
NNs inspired by classical architectures to solve problems
that are intractable with classical models.

Methods

Soft quantum perceptron for XOR gate learning.

We now discuss the details of the simulation setting
for XOR gate learning. Figure 4a shows the model
structure for learning an XOR gate, where two neurons
in the input layer receive and encode data points, and
the neuron in the output layer predicts the outcome.
We adopt a simpler and more efficient angle encoding
method instead of the method adopted in Ref. [45] to
encode the data (Fig. 4b) and accelerates the conver-
gence of the training process. Specifically, for an input
set {xk}, we encode the i-th feature xk

i of the k-th data
point by applying a single-qubit rotation gate RY (xk

i π)
on the initial qubit |0〉, where Y represents the rotation
along the Y axis and xk

i π represents the rotation angle.
Note that a common MSE loss function and the Adam
algorithm [43] are used in the training processes for
all tasks in this study. The soft quantum perceptron
for learning XOR is optimized for 20 epochs, and the
learning rate is set to 0.1. Table I shows how the test
accuracy of our model for the XOR gate learning task
varies as the flip probability p increases.

Classifying nonlinear datasets. A 2-4-1 MLP struc-
ture is used for comparison in the task of classifying the
“circles” dataset, as classical perceptrons are unable to
classify nonlinear datasets. The reason for using this
structure is that the 2-4-1 MLP needs to learn 17 pa-
rameters, which is approximately the same number of
parameters that our model needs to learn. The structure
of the PQC model used for comparison is adopted from
Ref. [46]. This common layered PQC model is denoted
as

U(θ̄) = Bd

(

θ̄d
)

· · ·Bℓ

(

θ̄ℓ
)

· · ·B1

(

θ̄1
)

(6)

where θ̄ represents the overall learnable parameters of
the PQC, Bℓ

(

θ̄ℓ
)

is a parameterized block consisting of
a certain number of single-qubit gates and entangling
controlled gates, and depth d represents the total num-
ber of such blocks. These qubits and controlled gates in
the same block Bℓ

(

θ̄ℓ
)

form a cyclic code. The control
proximity range of a cyclic code, denoted as r, defines
how the controlled gates work. For any qubit index
j ∈ [0, N − 1] of an N -qubit circuit, the entangling code
clock has one controlled gate with the jth qubit as the
target and the qubit with the index k = (j+ r) mod (N)
as the control qubit (see Ref. [46] for details). In each
block Bℓ

(

θ̄ℓ
)

of our setting, each qubit is acted on by
a parameterized universal single-qubit gate. Then, the

Noise channels
Flip probability

0.10 0.20 0.30 0.35 0.40 0.50
Bit flip 100% 100% 100% 100% 75% 50%

Phase flip 100% 100% 100% 100% 100% 100%
Bit-phase flip 100% 100% 100% 100% 75% 50%

TABLE I. Test accuracies of learning the XOR gate with the
soft quantum perceptron after a bit flip channel, phase flip
channel, or bit-phase flip channel with different flip probabil-
ities.

code block follows. One more optimizable single-qubit
gate RY acts on each qubit in the final Bℓ

(

θ̄ℓ
)

. The
control proximity range of a cyclic code r is fixed to 1.
Specifically, a 2-qubit circuit of depth d = 1 and size
s = 6 is used to classify the “circles” dataset, where d is
the number of blocks Bℓ

(

θ̄ℓ
)

and s is the total number of
gates in the circuit other than in the encoding layer. In
particular, the encoding method in Ref. [45] is also used
in this PQC model for classifying nonlinear datasets.
To enrich the expressivity of our model, we adopt the
“parallel encodings” strategy mentioned in Ref. [47]
when classifying the “moons” dataset, that is, using
multiple neurons to repeatedly encode the same input in
the input layer. In the task of classifying the “moons”
dataset, we repeatedly encode each input with three
neurons. For comparison, we also simulate the results
of a 2-10-1 MLP and a 4-qubit PQC with d = 2 and
s = 24. The MLP has 41 parameters to learn. The PQC
model also adopts the “parallel encodings” strategy in
this task. In particular, the soft quantum perceptron
does not have hidden layers, so it is a simpler structure
compared to the MLP. In fact, in addition to the results
presented in the main text, we also found that a 4-qubit
PQC with d = 10 and s = 40 could only achieve 94%
accuracy when classifying the “moons” dataset. Table II
shows how the test accuracy of our model for classifying
the “circles” datasets varies as the flip probability p
increases. Note that this effect is continuous, but the
presentation of our results in a discrete table format
may create an impression of discontinuity. Moreover,
when the probability of bit flip or bit-phase flip reaches
0.5, the |0〉 and |1〉 components of the corresponding
quantum state become indistinguishable in the com-
putational basis, resulting in the inability to extract
any relevant information. This causes a sudden drop
in the probability of successful learning. This effect is
particularly pronounced in close proximity to the 0.5
probability threshold.

Simulation setting for handwritten digit recogni-

tion. The specific simulation seting is as follows. First,
we extract several subdatasets from MNIST. For ex-
ample, {3, 6} represents the subdataset containing two
classes of the digits 3 and 6. After that, we apply the
same downsampling size to all images from the same
subdataset of MNIST. Specifically, we downsample the
resolution of the original images from 28 × 28 to 4 × 4
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Noise channels
Flip probability

0.10 0.20 0.30 0.40 0.50
Bit flip 100% 100% 100% 100% 32%

Phase flip 100% 100% 93% 92% 91%
Bit-phase flip 100% 100% 100% 100% 68%

TABLE II. Test accuracies of learning the “circles” dataset
with the soft quantum perceptron after a bit flip channel,
phase flip channel, or bit-phase flip channel with different flip
probabilities.

for the datasets with two or three classes, and to 8 × 8
for datasets with four or five classes. Finally, we use
the structure from Ref. [18] that contains a hidden layer
for QuantumFlow, the classical MLP, and the SQFNN,
where the hidden layer contains 4 neurons for two-class
datasets, 8 neurons for three-class datasets, and 16 neu-
rons for four- and five-class datasets. The input and
output layers of these models (including SMP) are de-
termined by the downsampling size and the number of
digits in the subdatasets. Note that the PQC model is
designed as a 4-qubit circuit of d = 10 and s = 120 due
to the lack of the concept of neurons. The PQC model
is usually used as a binary classifier in the current study.
Therefore, the PQC model is only used to classify the
datasets with two classes in this task. Other Quantum-
Flow settings, such as accuracy, are consistent with those
in Ref. [18].
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