
Token Compression Meets Compact Vision

Transformers: A Survey and Comparative Evaluation

for Edge AI

Phat Nguyen∗ and Ngai-Man Cheung∗

∗Singapore University of Technology and Design (SUTD)

E-mail: {tienphat nguyen,ngaiman cheung}@sutd.edu.sg

AbstractÐToken compression techniques have recently
emerged as powerful tools for accelerating Vision Transformer
(ViT) inference in computer vision. Due to the quadratic
computational complexity with respect to the token sequence
length, these methods aim to remove less informative
tokens before the attention layers to improve inference
throughput. While numerous studies have explored various
accuracy±efficiency trade-offs on large-scale ViTs, two critical
gaps remain. First, there is a lack of unified survey that
systematically categorizes and compares token compression
approaches based on their core strategies (e.g., pruning,
merging, or hybrid) and deployment settings (e.g., fine-tuning vs.
plug-in). Second, most benchmarks are limited to standard ViT
models (e.g., ViT-B, ViT-L), leaving open the question of whether
such methods remain effective when applied to structurally
compressed transformers, which are increasingly deployed on
resource-constrained edge devices. To address these gaps, we
present the first systematic taxonomy and comparative study
of token compression methods, and we evaluate representative
techniques on both standard and compact ViT architectures.
Our experiments reveal that while token compression methods
are effective for general-purpose ViTs, they often underperform
when directly applied to compact designs. These findings not
only provide practical insights but also pave the way for
future research on adapting token optimization techniques to
compact transformer-based networks for edge AI and AI agent
applications.

I. INTRODUCTION

Vision Transformers (ViTs)[16] have emerged as a powerful

and general-purpose architecture for various visual understand-

ing tasks, spanning image[17], video[18], and multimodal

domains[19], due to their powerful representation learning and

strong generalization. However, their quadratic scaling with

token count and large model sizes pose significant challenges

for deployment on resource-constrained devices. To alleviate

this, two complementary families of optimization methods

have emerged. Structural compression adapts classical pruning

and neural architecture search (NAS) techniques to ViTs.

For example, AutoFormer[20] and ElasticViT[21] employ a

two-stage search to derive compact ViT variants. In parallel,

token optimization leverages the variable-length capabilities of

self-attention to dynamically drop or merge less informative

tokens under a predefined keep ratio, reducing inference cost

without modifying the core network.[6], [9], [14]

These two paradigms differ in perspective. Structural com-

TABLE I
SUMMARY OF TOKEN COMPRESSION METHODS. EACH METHOD IS

CATEGORIZED BY ITS COMPRESSION APPROACH (PRUNING, MERGING, OR

HYBRID Ð A COMBINATION OF BOTH), ITS REDUCTION TYPE (STATIC:
FIXED KEEP-RATE PRUNING; DYNAMIC: ADAPTIVE KEEP-RATE PRUNING;
HARD: EXCLUSIVE TOKEN MERGING; SOFT: WEIGHTED AVERAGING OF

TOKEN EMBEDDINGS), AND WHETHER TRAINING IS REQUIRED.

Method Approach Compression Type Training Required

EViT[1] Pruning Static ✗

DynamicViT[2] Pruning Static ✓

Cropr[3] Pruning Static ✓

ATS[4] Pruning Dynamic ✗

SPViT[5] Pruning Dynamic ✓

ToMe[6] Merging Hard ✗

TokenPooling[7] Merging Hard ✗

TCFormer[8] Merging Hard ✗

PiToMe[9] Merging Hard ✗

SiT[10] Merging Soft ✓

Sinkhorn[11] Merging Soft ✓

PatchMerger[12] Merging Soft ✓

DTEM[13] Merging Soft ✓

ToFu[14] Hybrid - ✗

DiffRate[15] Hybrid - ✓

pression adopts a model-centric, data-agnostic view: once the

architecture is chosen. Token optimization, in contrast, is data-

centric: it adapts to the information content of each sample:

some methods act as plug-in modules in pretrained ViTs, while

others require partial or complete retraining to learn optimal

reduction ratios.

Since these approaches are orthogonal, a question arises:

can we combine them to achieve models that are both struc-

turally and data-aware? This topic has not been explored in

prior work, yet it is highly important given the stringent

computational constraints of many emerging edge AI and AI

agent applications. A straightforward strategy is to first apply

structural compression - obtaining a compact network - then

apply token optimization on top. In this work, we investigate

this pipeline through extensive experiments.

Our contributions are three-fold:

1) We present a comprehensive survey and taxonomy of

token compression methods, categorizing them by their

compression strategy and deployment requirements (as

summarized in Table I).

2) We conduct the experiments of representative token

compression techniques applied to structure-compressed
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ViTs, assessing their suitability for edge-deployable

models.

3) We demonstrate that, when directly applied to compact

backbones, existing token compression methods under-

perform, revealing a critical gap: token reduction algo-

rithms must be specifically adapted to the architectural

and resource constraints of compact transformers.

II. RELATED WORKS

A. Structure Compression

To address the need of computation-intensive applications

[22]±[24] and to enable efficient deployment of Vision Trans-

formers on resource-constrained settings such as edge AI [25],

[26] and AI agent [27], [28] applications, structural compres-

sion has become a key research direction. Its goal is to mitigate

the over-parameterization of ViTs when applied to downstream

tasks, by reducing redundant computation and model size.

Structural compression strategies are primarily grouped in two

categories: Sparsity-based pruning, which removes redundant

weights or activations, and Neural Architecture Search (NAS),

which automatically finds efficient ViT designs under task-

specific constraints.

Model pruning introduces sparsity by eliminating unimpor-

tant weights or neurons, effectively reducing the runtime cost

of matrix multiplications and lowering latency. Techniques

like channel pruning (NViT[29]) or width and depth pruning

(WDPruning[30]) have shown promising results on Vision

Transformers. Knowledge distillation can also be applied to

enhance the performance of structural compressed networks

[31], [32].

Neural Architecture Search (NAS), by contrast, seeks to

directly define compact ViT architectures optimized for both

accuracy and efficiency. For instance, AutoFormer proposes

a one-shot NAS framework that uses weight-sharing (entan-

glement) across transformer blocks to jointly train a large

supernet containing thousands of subnetworks. Once trained,

a lightweight evolutionary search is conducted to select the

best-performing subnet. Follow-up works have improved this

paradigm by expanding the search space[33] or refining su-

pernet training (e.g., NasViT[34], ViTAS[35]). In our study,

we adopt the subnets discovered by the original AutoFormer

framework as compact ViT backbones, and analyze how well

token compression techniques integrate with these structure-

optimized models.

B. Token Compression

The transformer-based designs support processing with to-

ken sequences of variable length, yet not all tokens are

important to represent the meaning of the input sequence (e.g.

background regions of an image) [8]. The token reduction

techniques aim to detect and drops less important tokens in

some layers in the rest of the network inference. Technically,

a lightweight scoring module can be inserted at selected

transformer layers to rank each token’s importance and then

compress the least useful ones during inference ([1], [2], [5]).

While the recent work [36] presents a categorization of

several token compression methods to support a controlled ex-

perimental analysis of reduction patterns on the vanilla Vision

Transformer [16], the focus of this work is an empirical study.

In contrast, our work provides an extensive and systematic

survey of token compression techniques. First, we introduce a

taxonomy with a new category, hybrid compression, which in-

tegrates both pruning and merging within a single framework.

Second, we broaden significantly the scope to include a wider

range of recent developments, including plug-in, learnable, and

adaptive approaches applicable to various vision tasks beyond

classification, such as detection and segmentation.

III. A TAXONOMY OF TOKEN COMPRESSION METHODS

Inspired by [36], we start with discussion of two token

compression paradigms: pruning and merging. We improve

upon [36] by providing a broader and up-to-date view, then

incorporate recent methods into both groups and introduce

a new category, hybrid compression, which integrates both

strategies in a unified design.

A. Token Pruning

Token pruning methods can be categorized into two main

types based on how they determine the number of tokens to

retain.

1) Static Keep Rate Pruning: In the static keep-rate setting,

a fixed number of tokens is preserved at each reduction stage.

For instance, EViT[1] selects the top-K most important tokens

based on their attention to the CLS token and aggregates the

pruned tokens into a single fused token using a weighted aver-

age. DynamicViT[2] also operates under a static token budget,

but introduces a differentiable scoring module that learns to

predict per-token importance, enabling end-to-end trainable to-

ken selection. Token Cropr [3]. extends token pruning beyond

classification by introducing lightweight, task-aware auxiliary

modules (one appended to each transformer block). Each

auxiliary ªCroprº head uses a cross-attention mechanism with

trainable queries to compute token-level importance scores.

These scores are then supervised directly by the task-specific

loss (e.g., segmentation, detection, classification), which allows

the network to dynamically prune tokens most relevant to the

end objective.

2) Dynamic Keep Rate Pruning: Dynamic Pruning tech-

nique adjusts the token reduction ratios adaptively for each

input sample. ATS [4] relies on a stochastic sampling strategy

to preserve fewer tokens when attention patterns focus on

particular areas. Such an adaptive approach allows the model to

optimize computational allocation according to the complexity

of each input sample. SPViT [37] addresses efficient inference

in Vision Transformers by proposing a soft token pruning

strategy that adapts per input and per layer. The method

stems from the observation that different attention heads in

a ViT capture diverse and complementary features, making it

suboptimal to treat token importance uniformly across heads.

To account for this, SPViT introduces a token selector module

that computes head-wise token importance scores and then
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aggregates them into a global score via a learnable weighted

combination.

B. Token Merging

The objective of token merging method is to reduce infor-

mation loss by avoiding token dropping, but aim to combine

similar tokens into representative ones. And the merging

mechanism is typically built to pairing or clustering similar

tokens. Based on the merging mechanism, these methods can

be categorized into hard merging and soft merging.

1) Hard-Merging: In hard merging setting, discrete clus-

tering algorithms are employed to assign tokens to distinct

groups, and the merged tokens are computed as average or

weighted representations of each group (ToMe[6], Token-

Pooling[38], TCFormer[39]). PiToMe [9] aims address the

limitation of ToMe’s pairing strategy that tends to remove

informative tokens in deeper layers. To overcome this, PiToMe

introduces an efficient metric called the energy score, which

quantifies the importance of each token based on its contribu-

tion to the overall feature spectrum. In this formulation, back-

ground tokens that dominate large, redundant regions deemed

to have high energy and are prioritized for merging, while

low-energy tokens often carrying fine-grained or informative

details, are preserved.

2) Soft-Merging: Soft merging approaches operate by en-

abling tokens to participate in multiple merged outputs through

convex combinations calculated using a learned assignment

matrices (SiT[10]) or query-based assignment (Sinkhorn[11],

PatchMerger[12]). DTEM [13] proposes a differentiable token

merging technique that leverages a lightweight yet effective

auxiliary embedding module, which is decoupled from the

main transformer layers. This module is specifically designed

to compute token similarity for merging, using dedicated token

embeddings that are independent of the backbone represen-

tation. The merging module can be trained either end-to-

end with the transformer or modularly, allowing flexibility in

optimization and deployment.

C. Hybrid Compression

While token pruning and token merging have usually been

treated as separate paradigms, several works demonstrate that

integrating both techniques can produce more effective and

adaptable token compression results. Intuitively, hybrid com-

pression methods aim to leverage the strengths of two com-

pression schemes: the strengths of token pruning in efficiently

removing clearly redundant tokens, and the strengths of token

merging to preserve semantic information by fusing similar

tokens.

ToFu [14] proposes an adaptive plug-in token compression

strategy that can be applied without further re-training. Specif-

ically, ToFu examines the model’s output behavior when token

embeddings are interpolated: if the output is sensitive to the

change, it indicates that the tokens carry distinct information

and pruning is favored to remove redundant ones; if the output

is smooth, suggesting redundancy, merging is applied instead.

To further improve compression quality, ToFu introduces a

norm-preserving interpolation function to maintain the mag-

nitude of merged tokens and reduce the risk of distribution

shifts.

DiffRate [15] proposes a hybrid token compression frame-

work that incorporates both pruning and merging operations

under layer-wise differentiable compression ratios. The method

employs a softmax-based re-parameterization technique allow-

ing the gradients backpropagation through the compression

ratio, enabling it to be optimized end-to-end.

D. Categorization by deployment requirements

Token compression methods differ in how they are deployed.

Some, such as PiToMe [9] and ToFu [14], can be used as

plug-ins without additional training. Others, like DTEM [13]

or DiffRate [15], require full or partial fine-tuning to learn

scoring modules or adaptive compression rates. Table I sum-

marizes the recent token compression techniques following the

taxonomy introduced in this work, along with their deployment

requirements.

IV. EMPIRICAL EVALUATION ON COMPACT VITS

A. Experiment settings

Setup. We evaluate token compression methods on the stan-

dard image classification task using the ImageNet-1K dataset,

which contains 1.28M training images and 50,000 validation

images. As the backbone architecture, we adopt AutoFormer-

S as our representative compact transformer, pretrained on

ImageNet-1K via supervised learning. To assess the impact

of token compression, we report Top-1 classification accuracy,

GFLOPs, and inference throughput measured in images per

second (img/s) to evaluate both predictive performance and

computational efficiency. For throughput measurement, we run

all methods on a single NVIDIA A6000 GPU with a batch size

of 128.

Compression methods. To provide a comprehensive eval-

uation of token compression techniques applied to compact

transformers, we select representative methods from each

category in the proposed taxonomy. For plug-in methods that

do not require retraining, we include ToMe [6], PiToMe [9],

and ToFu [14]. For trainable methods that require retrain-

ing or fine-tuning, we evaluate Cropr [3] (pruning-based),

DTEM [13] (merging-based), and DiffRate [15] (hybrid com-

pression). For all retrainable methods, we follow each method’s

official implementation and training procedure as originally

proposed for standard Vision Transformer backbones, without

manually re-tuning them for AutoFormer. This allows us

to assess how readily these methods generalize to compact

architectures without additional adaptation.

B. Experiment results

Table II reports the image classification performance of the

compact transformer AutoFormer-S [20] when various token

compression methods are applied. The first row shows the

performance of the original model without any compression.

We evaluate two experimental settings:
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TABLE II
TOP-1 ACCURACY COMPARISON OF TOKEN COMPRESSION METHODS ON

AUTOFORMER-S IN OFF-THE-SHELF AND RETRAINED SETTINGS

(ACC1(OTS) VS. ACC1(RE-TRAIN)), WITH INFERENCE EFFICIENCY

MEASURED BY GFLOPS AND THROUGHPUT (IMG/S).

Method Acc1(ots) ↑ Acc1(re-train) ↑ GFLOPs ↓ img/s ↓

AutoFormer-S 81.66 81.66 4.92 988

ToMe 29.45 79.22 3.27 1550
PiToMe 30.10 78.74 3.27 1435

ToFu 30.69 78.17 3.27 1507

Cropr - 69.47 4.26 1131
DiffRate - 77.47 3.27 1557
DTEM - 42.63 3.27 1620

TABLE III
ABLATION EXPERIMENTS FOR OFF-THE-SHELF SETTING WITH DIFFERENT

COMPRESSION RATIOS ON AUTOFORMER-S. TOP-1 ACCURACY IS USED AS

EVALUATION METRIC.

#pruned tokens ToMe ToFu PiToMe GLOPS

0 81.66 81.66 81.66 4.92

3 30.60 30.72 29.88 4.36
6 29.50 30.03 29.78 3.81
9 29.45 30.69 30.10 3.27
12 28.80 30.77 29.71 2.75
15 27.42 31.54 29.68 2.24
18 22.03 31.99 29.48 1.87

1) Off-the-shelf Setting: In this setting, we apply three

parameter-free token compression methods, ToMe [6], PiT-

oMe [9], and ToFu [14], as plug-in modules without retraining.

As shown in Table II, the Top-1 accuracy scores (Acc1(ots))

drop drastically for all three methods, with reductions of nearly

50% compared to the original model. To examine whether

the performance degradation is caused by overly aggressive

token reduction, we conduct an ablation study by varying the

number of preserved tokens. As shown in Table III, even

relatively mild reductions (e.g., with compression ratios of

3 or 6 tokens) result in a sharp decline in classification

accuracy. This suggests that either critical task-related features

are being discarded, or the compressed token representations

are misaligned with the pretrained network parameters, making

the model unable to extract them effectively.

These results indicate that compact transformers are highly

sensitive to plug-in token compression techniques. When ap-

plied directly without carefull adaptation, such methods can

severely impair the model’s ability to preserve discriminative

features for image classification. In parallel, we also observe

a clear reduction in computational cost as the number of

preserved tokens decreases. Specifically, GFLOPs drop pro-

gressively from 4.36 to 1.87 as the compression ratios increase

from 3 to 18 tokens (Table III). This trend demonstrates

that token compression offers a tangible benefit in reducing

inference cost, even when applied to an already optimized

compact model like AutoFormer.

2) Retraining Setting: In this setting, we treat token com-

pression modules as additional components integrated into

the model and perform full network retraining after applying

compression. The resulting Top-1 accuracies are denoted as

Acc1(re-train) in Table II.

Motivated by the observations in the off-the-shelf setting, we

first examine whether retraining can recover the performance

of the three plug-in compression methods (ToMe, PiToMe, and

ToFu). After fine-tuning the entire network, all three methods

show substantial improvements in accuracy: approximately

+50% for ToMe, and +48% for both PiToMe and ToFu. These

results suggest that a major cause of performance degradation

in the off-the-shelf setting could be a mismatch between

the compressed token embeddings and the pretrained model

weights. Retraining effectively realigns the network to the

modified token embedding set, allowing it to process the

compressed inputs more effectively.

Next, we evaluate adaptive compression methods that are

designed to be trained jointly with the network: DiffRate [15],

Cropr [3], and DTEM [13]. Among them, DiffRate demon-

strates the most favorable accuracy-efficiency trade-off, achiev-

ing a 1.5× throughput speedup while maintaining Top-1

accuracy above 77%. In contrast, Cropr obtains limited gains

in throughput and significantly reduces accuracy to below 70%

with a relative GLOPs improvement. Interestingly, DTEM fails

to converge during training in our setting, despite achieving

the highest inference throughput. This may be attributed to its

merging mechanism, which constructs a decoupled embedding

space for trainable compression, which works well on standard

ViTs but may require more careful fine-tuning on compact

models like AutoFormer. This result indicates that adaptive

compression configurations tuned for standard Vision Trans-

formers may not directly transfer to compact architectures

such as AutoFormer. These findings highlight the need for

a method-specific or architecture-aware adaptation approach

when applying token compression to compact models.

V. CONCLUSIONS

In this work, we present a comprehensive survey of re-

cent token optimization techniques for Vision Transformers,

covering a wide range of compression approachesÐincluding

pruning, merging, and hybrid strategies. While many of these

methods demonstrate strong accuracy-efficiency trade-offs on

standard ViTs, and some can be applied as plug-in modules

without retraining, we explore a more practical scenario:

applying token compression on already compressed (compact)

ViTs for aggressive deployment settings.

Importantly, our empirical results indicates that token com-

pression is not a one-size-fits-all solution, particularly when

applied to compact backbones without adaptation. However,

performance can be significantly recovered through retraining,

suggesting that alignment between token representations and

network parameters is critical. In addition, token compression

can further reduce inference cost on compact architectures,

highlighting its complementary role to the overall optimization

pipeline. In summary, our study motivates future work toward

a unified framework that jointly considers both structure-aware

and data-centric optimization strategies, offering efficient and

adaptive transformer models tailored for resource-constrained

deployment scenarios such as edge AI and AI agent applica-

tions.
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